Modelling Hot Deformation of Steels


Book Description

Computer Aided Engineering may be defined as an approach to solving tech nological problems in which most or all of the steps involved are automated through the use of computers, data bases and mathematical models. The success of this ap proach, considering hot forming, is tied very directly to an understanding of material behaviour when subjected to deformation at high temperatures. There is general agreement among engineers that not enough is known about that topic -and this gave the initial impetus for the project described in the present study. The authors secured a research grant from NATO (Special Research Grant #390/83) with a mandate to study the "State-of-the-Art of Controlled Rolling". What follows is the result of that study. There are five chapters in this Monograph. The first one, entitled "State-of-the Art of Controlled Rolling" discusses industrial and laboratory practices and research designed to aid in the development of microalloyed steels of superior quality. Follow ing this is the chapter "Methods of Determining Stress-Strain Curves at Elevated Temperatures". The central concern here is the material's resistance to deformation or in other words, its flow strength, the knowledge of which is absolutely essential for the efficient and economical utilization of the computers controlling the rolling process.




Hot Working Guide


Book Description

A unique source book with flow stress data for hot working, processing maps with metallurgical interpretation and optimum processing conditions for metals, alloys, intermetallics, and metal matrix composites. The use of this book replaces the expensive and time consuming trial and error methods in process design and product development.




Handbook of Thermal Process Modeling Steels


Book Description

An Emerging Tool for Pioneering Engineers Co-published by the International Federation of Heat Treatment and Surface Engineering.Thermal processing is a highly precise science that does not easily lend itself to improvements through modeling, as the computations required to attain an accurate prediction of the microstructure and properties of work




Numerical Modelling and Simulation of Metal Processing


Book Description

This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.




Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization


Book Description

The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. - Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies - Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation - Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application




Advances in Microalloyed Steels


Book Description

In response to the demanding requirements of different sectors, such as construction, transportation, energy, manufacturing, and mining, new generations of microalloyed steels are being developed and brought to market. The addition of microalloying elements, such as niobium, vanadium, titanium, boron, and/or molybdenum, has become a key tool in the steel industry to reach economically-viable grades with increasingly higher mechanical strength, toughness, good formability, and weldable products. The challenges that microalloying steel production faces can be solved with a deeper understanding of the effects that these microalloying additions and combinations of them have during the different steps of the steelmaking process.




Modeling Steel Deformation in the Semi-Solid State


Book Description

This book offers a unique approach to integrated high-temperature process modelling, intended to serve as a design aid for new metal processing technologies. The second edition has been substantially expanded to include new content such as: a new algorithm and test results of 3D stereoscopic visualization; new programming procedures for modelling; the validation of computer simulation using experimental results; a multiscale model of grain growth; a conceptual methodology developing “high-temperature” CCT (continuous cooling transformation) diagrams, and many more examples validating the numerical simulations. The models presented are applied in comprehensive tests in order to solve problems related to the high-temperature deformation of steel. The testing methods include both physical tests using specialist laboratory instruments, and advanced mathematical modelling: the Finite Element method (FE), Smoothed Particle Hydrodynamics method (SPH) and Mo nte Carlo method (MC).This approach, which integrates the fields of physical and computer-based simulations, forms the basis for the described concept of integrated high-temperature process modelling, presented in detail in this book.




Alloy Steels


Book Description

This book is a printed edition of the Special Issue "Alloy Steels" that was published in Metals




Advances in Plastic Forming of Metals


Book Description

This book is a printed edition of the Special Issue "Advances in Plastic Forming of Metals" that was published in Metals




Hot Deformation and Processing of Aluminum Alloys


Book Description

A comprehensive treatise on the hot working of aluminum and its alloys, Hot Deformation and Processing of Aluminum Alloys details the possible microstructural developments that can occur with hot deformation of various alloys, as well as the kind of mechanical properties that can be anticipated. The authors take great care to explain and differentiate hot working in the context of other elevated temperature phenomena, such as creep, superplasticity, cold working, and annealing. They also pay particular attention to the fundamental mechanisms of aluminum plasticity at hot working temperatures. Using extensive analysis derived from polarized light optical microscopy (POM), transmission electron microscopy (TEM), x-ray diffraction (XRD) scanning electron-microscopy with electron backscatter imaging (SEM-EBSD), and orientation imaging microscopy (OIM), the authors examine those microstructures that evolve in torsion, compression, extrusion, and rolling. Further microstructural analysis leads to detailed explanations of dynamic recovery (DRV), static recovery (SRV), discontinuous dynamic recrystallization (dDRX), discontinuous static recrystallization (dSRX), grain defining dynamic recovery (gDRV) (formerly geometric dynamic recrystallization, or gDRX), and continuous dynamic recrystallization involving both a single phase (cDRX/1-phase) and multiple phases (cDRX/2-phase). A companion to other works that focus on modeling, manufacturing involving plastic and superplastic deformation, and control of texture and phase transformations, this book provides thorough explanations of microstructural development to lay the foundation for further study of the mechanisms of thermomechanical processes and their application.