Modelling, Simulation and Control of Two-Wheeled Vehicles, Enhanced Edition


Book Description

Enhanced e-book includes videos Many books have been written on modelling, simulation and control of four-wheeled vehicles (cars, in particular). However, due to the very specific and different dynamics of two-wheeled vehicles, it is very difficult to reuse previous knowledge gained on cars for two-wheeled vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles presents all of the unique features of two-wheeled vehicles, comprehensively covering the main methods, tools and approaches to address the modelling, simulation and control design issues. With contributions from leading researchers, this book also offers a perspective on the future trends in the field, outlining the challenges and the industrial and academic development scenarios. Extensive reference to real-world problems and experimental tests is also included throughout. Key features: The first book to cover all aspects of two-wheeled vehicle dynamics and control Collates cutting-edge research from leading international researchers in the field Covers motorcycle control – a subject gaining more and more attention both from an academic and an industrial viewpoint Covers modelling, simulation and control, areas that are integrated in two-wheeled vehicles, and therefore must be considered together in order to gain an insight into this very specific field of research Presents analysis of experimental data and reports on the results obtained on instrumented vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles is a comprehensive reference for those in academia who are interested in the state of the art of two-wheeled vehicles, and is also a useful source of information for industrial practitioners.




Modelling, Simulation and Control of Two-Wheeled Vehicles


Book Description

Enhanced e-book includes videos Many books have been written on modelling, simulation and control of four-wheeled vehicles (cars, in particular). However, due to the very specific and different dynamics of two-wheeled vehicles, it is very difficult to reuse previous knowledge gained on cars for two-wheeled vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles presents all of the unique features of two-wheeled vehicles, comprehensively covering the main methods, tools and approaches to address the modelling, simulation and control design issues. With contributions from leading researchers, this book also offers a perspective on the future trends in the field, outlining the challenges and the industrial and academic development scenarios. Extensive reference to real-world problems and experimental tests is also included throughout. Key features: The first book to cover all aspects of two-wheeled vehicle dynamics and control Collates cutting-edge research from leading international researchers in the field Covers motorcycle control – a subject gaining more and more attention both from an academic and an industrial viewpoint Covers modelling, simulation and control, areas that are integrated in two-wheeled vehicles, and therefore must be considered together in order to gain an insight into this very specific field of research Presents analysis of experimental data and reports on the results obtained on instrumented vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles is a comprehensive reference for those in academia who are interested in the state of the art of two-wheeled vehicles, and is also a useful source of information for industrial practitioners.




Modelling and Control of an Autonomous Two-Wheeled Vehicle


Book Description

With respect to the future urban mobility, modern electrical bicycles, advanced motorcycles and innovative two-wheeled vehicles are arresting enormous amount of attention. Especially, model-based control and optimal trajectory planning for such vehicles are important to the research and development of the future. Therefore, a reliable and yet usable vehicle model as well as a systematic approach to motion control for two-wheeled vehicles are essential, to which this work makes a contribution. Currently available two-wheeled vehicle models are mostly either too complex to be used for a systematic control synthesis, or too simple such that the physical behaviour of the vehicle is no more represented. In this thesis, a unifying approach to modelling and control for autonomous two-wheeled vehicles is presented. The resulting model is generally valid and physically detailed enough to represent the characteristic dynamical behaviour such as the self-stability. At the same time, it is suited to a systematic control synthesis. Furthermore, the systematic extenddability, for instance by a rider, is demonstrated. The model is validated by simulations and by comparison to well-known models from the literature. The proposed vehicle model is derived in the Lagrangian and Hamiltonian framework and used for model-based optimal trajectory planning. Furthermore, a passivity-based trajectory tracking controller is designed based on the resulting port-Hamiltonian system using the so-called generalised canonical transformations. Such a controller is physically interpretable and robust against parameter uncertainties. To this end, existing approaches of passivity-based controller design are extended and adjusted for two-wheeled vehicles. Finally, a prototype two-wheeled vehicle is introduced which is used for experimental validation of the model and to demonstrate motion control algorithms for autonomous two-wheeled vehicles.







Motorcycle Dynamics


Book Description

The book presents the theory of motorcycle dynamics. It is a technical book for the engineer, student, or technically/mathematically inclined motorcycle enthusiast. Motorcycle Dynamics offers a wealth of information compiled from the most up-to-date research into the behavior and performance of motorcycles. The structure of the book and abundant graphs assist in understanding an exceptionally complicated subject. The book presents a large number of graphs and figures that make the understanding easy.




Vehicle Dynamics


Book Description

The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context, different levels of complexity are presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models based on real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios. In addition to some corrections, further application examples for standard driving maneuvers have been added for the present second edition. To take account of the increased use of driving simulators, both in research, and in industrial applications, a new section on the conception, implementation and application of driving simulators has been added.







Fundamentals of Vehicle Dynamics and Modelling


Book Description

An introduction to vehicle dynamics and the fundamentals of mathematical modeling Fundamentals of Vehicle Dynamics and Modeling is a student-focused textbook providing an introduction to vehicle dynamics, and covers the fundamentals of vehicle model development. It illustrates the process for construction of a mathematical model through the application of the equations of motion. The text describes techniques for solution of the model, and demonstrates how to conduct an analysis and interpret the results. A significant portion of the book is devoted to the classical linear dynamic models, and provides a foundation for understanding and predicting vehicle behaviour as a consequence of the design parameters. Modeling the pneumatic tire is also covered, along with methods for solving the suspension kinematics problem, and prediction of acceleration and braking performance. The book introduces the concept of multibody dynamics as applied to vehicles and provides insight into how large and high fidelity models can be constructed. It includes the development of a method suitable for computer implementation, which can automatically generate and solve the linear equations of motion for large complex models. Key features: ● Accompanied by a website hosting MATLAB® code. ● Supported by the Global Education Delivery channels. Fundamentals of Vehicle Dynamics and Modeling is an ideal textbook for senior undergraduate and graduate courses on vehicle dynamics.




Dynamic Control of a Vehicle with Two Independent Wheels


Book Description

The feedback control and modeling of a mobile robot with two wheels that are independently steerable and drivable is studied. Two-wheel steer vehicles increase their maneuverability when both wheels are powered and therefore increases their performance in confined spaces. A dynamic feedback control algorithm is developed, which enables the vehicle to move from any initial configuration (position and orientation) to any final configuration. Simulation results are presented to verify the independent control of the two position variables and the orientation variable. A comparison with a two-wheel steering and one wheel drive vehicle shows that driving both wheels increases performance and maneuverability.




Driving Simulation


Book Description

Passive and active safety systems (ABS, ESP, safety belts, airbags, etc.) represent a major advance in terms of safety in motoring. They are increasingly developed and installed in cars and are beginning to appear in twowheelers. It is clear that these systems have proven efficient, although there is no information about their actual operation by current users. The authors of this book present a state of the art on safety systems and assistance to driving and their two-wheeled counterparts. The main components constituting a driving simulator are described, followed by a classification of robotic architectures. Then, a literature review on driving simulators and two-wheeled vehicles is presented. The aim of the book is to point out the differences of perspectives between motor vehicles and motorcycles to identify relevant indicators to help in choosing the mechanical architecture of the motorcycle simulator and appropriate controls. Contents 1. Driving Simulation. 2. Architecture of Driving Simulators. 3. Dynamics of Two-Wheeled Vehicles. 4. Two-Wheeled Riding Simulator: From Design to Control.