Modern Compiler Implementation in C


Book Description

This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for a two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.




Modern Compiler Implementation in ML


Book Description

This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.




Modern Compiler Implementation in Java


Book Description

Appel explains all phases of a modern compiler, covering current techniques in code generation and register allocation as well as functional and object-oriented languages. The book also includes a compiler implementation project using Java.




Modern Compiler Implementation in Java


Book Description

This textbook describes all phases of a compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as the compilation of functional and object-oriented languages, that is missing from most books. The most accepted and successful techniques are described concisely, rather than as an exhaustive catalog of every possible variant, and illustrated with actual Java classes. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the compilation of object-oriented and functional languages, garbage collection, loop optimization, SSA form, instruction scheduling, and optimization for cache-memory hierarchies, can be used for a second-semester or graduate course. This new edition has been extensively rewritten to include more discussion of Java and object-oriented programming concepts, such as visitor patterns. A unique feature is the newly redesigned compiler project in Java, for a subset of Java itself. The project includes both front-end and back-end phases, so that students can build a complete working compiler in one semester.




Modern Compiler Design


Book Description

"Modern Compiler Design" makes the topic of compiler design more accessible by focusing on principles and techniques of wide application. By carefully distinguishing between the essential (material that has a high chance of being useful) and the incidental (material that will be of benefit only in exceptional cases) much useful information was packed in this comprehensive volume. The student who has finished this book can expect to understand the workings of and add to a language processor for each of the modern paradigms, and be able to read the literature on how to proceed. The first provides a firm basis, the second potential for growth.




Introduction to Compiler Construction in a Java World


Book Description

Immersing students in Java and the JVM, this text enables a deep understanding of the Java programming language and its implementation. It focuses on design, organization, and testing, helping students learn good software engineering skills and become better programmers. By working with and extending a real, functional compiler, students develop a hands-on appreciation of how compilers work, how to write compilers, and how the Java language behaves. Fully documented Java code for the compiler is accessible on a supplementary website.




Engineering a Compiler


Book Description

This entirely revised second edition of Engineering a Compiler is full of technical updates and new material covering the latest developments in compiler technology. In this comprehensive text you will learn important techniques for constructing a modern compiler. Leading educators and researchers Keith Cooper and Linda Torczon combine basic principles with pragmatic insights from their experience building state-of-the-art compilers. They will help you fully understand important techniques such as compilation of imperative and object-oriented languages, construction of static single assignment forms, instruction scheduling, and graph-coloring register allocation. - In-depth treatment of algorithms and techniques used in the front end of a modern compiler - Focus on code optimization and code generation, the primary areas of recent research and development - Improvements in presentation including conceptual overviews for each chapter, summaries and review questions for sections, and prominent placement of definitions for new terms - Examples drawn from several different programming languages




A Practical Approach to Compiler Construction


Book Description

This book provides a practically-oriented introduction to high-level programming language implementation. It demystifies what goes on within a compiler and stimulates the reader's interest in compiler design, an essential aspect of computer science. Programming language analysis and translation techniques are used in many software application areas. A Practical Approach to Compiler Construction covers the fundamental principles of the subject in an accessible way. It presents the necessary background theory and shows how it can be applied to implement complete compilers. A step-by-step approach, based on a standard compiler structure is adopted, presenting up-to-date techniques and examples. Strategies and designs are described in detail to guide the reader in implementing a translator for a programming language. A simple high-level language, loosely based on C, is used to illustrate aspects of the compilation process. Code examples in C are included, together with discussion and illustration of how this code can be extended to cover the compilation of more complex languages. Examples are also given of the use of the flex and bison compiler construction tools. Lexical and syntax analysis is covered in detail together with a comprehensive coverage of semantic analysis, intermediate representations, optimisation and code generation. Introductory material on parallelisation is also included. Designed for personal study as well as for use in introductory undergraduate and postgraduate courses in compiler design, the author assumes that readers have a reasonable competence in programming in any high-level language.




The Well-Grounded Java Developer, Second Edition


Book Description

Understanding Java from the JVM up gives you a solid foundation to grow your expertise and take on advanced techniques for performance, concurrency, containerization, and more. In The Well-Grounded Java Developer, Second Edition you will learn: The new Java module system and why you should use it Bytecode for the JVM, including operations and classloading Performance tuning the JVM Working with Java’s built-in concurrency and expanded options Programming in Kotlin and Clojure on the JVM Maximizing the benefits from your build/CI tooling with Maven and Gradle Running the JVM in containers Planning for future JVM releases The Well-Grounded Java Developer, Second Edition introduces both the modern innovations and timeless fundamentals you need to know to become a Java master. Authors Ben Evans, Martijn Verburg, and Jason Clark distill their decades of experience as Java Champions, veteran developers, and key contributors to the Java ecosystem into this clear and practical guide. You’ll discover how Java works under the hood and learn design secrets from Java’s long history. Each concept is illustrated with hands-on examples, including a fully modularized application/library and creating your own multithreaded application. Foreword by Heinz Kabutz. About the technology Java is the beating heart of enterprise software engineering. Developers who really know Java can expect easy job hunting and interesting work. Written by experts with years of boots-on-the-ground experience, this book upgrades your Java skills. It dives into powerful features like modules and concurrency models and even reveals some of Java’s deep secrets. About the book With The Well-Grounded Java Developer, Second Edition you will go beyond feature descriptions and learn how Java operates at the bytecode level. Master high-value techniques for concurrency and performance optimization, along with must-know practices for build, test, and deployment. You’ll even look at alternate JVM languages like Kotlin and Clojure. Digest this book and stand out from the pack. What's inside The new Java module system Performance tuning the JVM Maximizing CI/CD with Maven and Gradle Running the JVM in containers Planning for future JVM releases About the reader For intermediate Java developers. About the author Benjamin J. Evans is a senior principal engineer at Red Hat. Martijn Verburg is the principal SWE manager for Microsoft’s Java Engineering Group. Both Benjamin and Martijn are Java Champions. Jason Clark is a principal engineer and architect at New Relic. Table of Contents PART 1 - FROM 8 TO 11 AND BEYOND! 1 Introducing modern Java 2 Java modules 3 Java 17 PART 2 - UNDER THE HOOD 4 Class files and bytecode 5 Java concurrency fundamentals 6 JDK concurrency libraries 7 Understanding Java performance PART 3 - NON-JAVA LANGUAGES ON THE JVM 8 Alternative JVM languages 9 Kotlin 10 Clojure: A different view of programming PART 4 - BUILD AND DEPLOYMENT 11 Building with Gradle and Maven 12 Running Java in containers 13 Testing fundamentals 14 Testing beyond JUnit PART 5 - JAVA FRONTIERS 15 Advanced functional programming 16 Advanced concurrent programming 17 Modern internals 18 Future Java




Programming Language Processors in Java


Book Description

This book provides a gently paced introduction to techniques for implementing programming languages by means of compilers and interpreters, using the object-oriented programming language Java. The book aims to exemplify good software engineering principles at the same time as explaining the specific techniques needed to build compilers and interpreters.