Modern developments in multivariate approximation


Book Description

This volume contains a selection of eighteen peer-reviewed articles that were presented at the 5th International Conference on Multivariate Approximation, held in Witten-Bommerholz in September 2002. The contributions cover recent developments of constructive approximation on manifolds, approximation by splines and kernels, subdivision techniques and wavelet methods. The main topics are: - applications of multivariate approximation in finance - approximation and stable reconstruction of images, data reduction - multivariate splines for Lagrange interpolation and quasi-interpolation - radial basis functions - spherical point sets - refinable function vectors and non-stationary subdivision - applications of adaptive wavelet methods - blending functions and cubature formulae - singularities of harmonic functions The book provides an overview of state-of-the-art developments in a highly relevant field of applied mathematics, with many links to computer science and geophysics.




Multivariate Approximation


Book Description

Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.




Recent Progress in Multivariate Approximation


Book Description

Nineteen contributions cover recent topics in constructive approximation on varieties, approximation by solutions of partial differential equations, application of Riesz bases and frames, multiwavelets and subdivision. An essential resource for researchers and graduates in applied mathematics, computer science and geophysics who are interested in the state-of-the-art developments in multivariate approximation.




New Developments in Approximation Theory


Book Description

A collection of papers by international contributors describing new developments in the fields of univariate and multivariate approximation theory. This research has applications in areas such as computer-aided geometric design, as applied in engineering and medical technology (e.g. computerized tomography).




Topics in Multivariate Approximation and Interpolation


Book Description

This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for graduate students specializing in these topics, and for researchers in universities and in industry. - A collection of articles of highest scientific standard - An excellent introduction and overview of recent topics from multivariate approximation - A valuable source of references for specialists in the field - A representation of the state-of-the-art in selected areas of multivariate approximation - A rigorous mathematical introduction to special topics of interdisciplinary research




Multivariate Approximation and Applications


Book Description

Approximation theory in the multivariate setting has many applications including numerical analysis, wavelet analysis, signal processing, geographic information systems, computer aided geometric design and computer graphics. This advanced introduction to multivariate approximation and related topics consists of nine articles written by leading experts surveying many of the new ideas and their applications. Each article takes the reader to the forefront of research and ends with a comprehensive bibliography.




A Primer on Radial Basis Functions with Applications to the Geosciences


Book Description

Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work. The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others. This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.




Multivariate Approximation : From Cagd To Wavelets - Proceedings Of The International Workshop


Book Description

Contents: Fast Algorithms for Simultaneous Polynomial Approximation (G Baszenski & M Tasche)α-Spline of Smoothing for Correlated Errors in Dimension Two (M Bozzini & L Lenarduzzi)New Developments in the Theory of Radial Basis Function Interpolation (M D Buhmann)Realization of Neural Networks with One Hidden Layer (C K Chui & X Li)A General Method for Constrained Curves with Boundary Conditions (P Costantini)Sign-Regular and Totally Positive Matrices: An Algorithmic Approach (M Gasca & J M Peña)Some Results on Blossoming and Multivariate B-Splines (R Gormaz & P-J Laurent)Riesz Bounds in Scattered Data Interpolation and L2-Approximation (K Jetter)On Multivariate Hermite Polynomial Interpolation (A Le Méhauté)Quantitative Approximation Results for Sigma-Pi-Type Neural Network Operators (B Lenze)Local Interpolation Schemes — From Curves to Surfaces (D Levin)Some Results on Approximation by Smoothing Dm-Splines (M C L de Silanes) Readership: Applied mathematicians.




Advanced Topics In Multivariate Approximation - Proceedings Of The International Workshop


Book Description

This volume consists of 24 refereed carefully edited papers on various topics in multivariate approximation. It represents the proceedings of a workshop organized by the University of Firenze, and held in September 1995 in Montecatini, Italy.The main themes of the volume are multiresolution analysis and wavelets, multidimensional interpolation and smoothing, and computer-aided geometric design. A number of particular topics are included, like subdivision algorithms, constrained approximation and shape-preserving algorithms, thin plate splines, radial basis functions, treatment of scattered data, rational surfaces and offsets, blossoming, grid generation, surface reconstruction, algebraic curves and surfaces, and neural networks.




Meshfree Approximation Methods with MATLAB


Book Description

Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.