Modern Ferrites, Volume 2


Book Description

MODERN FERRITES, Volume 2 A robust exploration of the basic principles of ferrimagnetic and their applications In Modern Ferrites: Volume 2, renowned researcher and educator, Vincent G. Harris delivers a comprehensive overview of ferrimagnetic phenomena and discussions of select applications of modern ferrite materials in emerging technologies and applications. Volume 2 explores fundamental properties of ferrite systems, including their structure, chemistry, and magnetism, as well as practical applications, such as permanent magnets; inductors, inverters, and filters; and their use in emerging applications as metamaterials, multiferroics, and biomedical technologies. In addition to the properties of ferrites, the included resources explore the processing, structure, and property relationships in ferrites as nanoparticles, thin and thick films, compacts, and crystals. The authors discuss how these relationships are key to realizing practical device applications laying the foundation for next generation communications, radar, sensing, and biomedical technologies. This volume includes: A comprehensive review of ferrite discoveries and impacts upon ancient cultures, their scientific evolution, and societal benefits; Discussion of the origins of magnetism in ferrimagnetic oxides including superexchange theory, GKA-rules, and recent developments in density functional theory; In-depth examination of ferrite power conversion and conditioning components and their processing as low temperature co-fired ceramics; Ferrite-based electromagnetic interference suppression and electromagnetic absorption; Nonlinear microwave devices; multiferroic and emerging magnetoelectric devices; Biomedical applications of ferrite nanoparticles Perfect for RF engineers and magnetitians working in the fields of RF electronics, radar, communications, and spintronics as well as other emerging technologies. Modern Ferrites will earn a place on the bookshelves of engineers and scientists interested in the ever-expanding technologies reliant upon ferrite materials and new processing methodologies. Modern Ferrites Volume 1: Basic Principles, Processing and Properties is also available (ISBN: 9781118971468).




Modern Ferrites, Volume 1


Book Description

MODERN FERRITES, Volume 1 A robust exploration of the basic principles of ferrimagnetics and their applications In Modern Ferrites Volume 1: Basic Principles, Processing and Properties, renowned researcher and educator Vincent G. Harris delivers a comprehensive overview of the basic principles and ferrimagnetic phenomena of modern ferrite materials. Volume 1 explores the fundamental properties of ferrite systems, including their structure, chemistry, and magnetism; the latest in processing methodologies; and the unique properties that result. The authors explore the processing, structure, and property relationships in ferrites as nanoparticles, thin and thick films, compacts, and crystals and how these relationships are key to realizing practical device applications laying the foundation for next generation technologies. This volume also includes: Comprehensive investigation of the historical and scientific significance of ferrites upon ancient and modern societies; Neel’s expanded theory of molecular field magnetism applied to ferrimagnetic oxides together with theoretic advances in density functional theory; Nonlinear excitations in ferrite systems and their potential for device technologies; Practical discussions of nanoparticle, thin, and thick film growth techniques; Ferrite-based electronic band-gap heterostructures and metamaterials. Perfect for RF engineers and magnetitians working in the field of RF electronics, radar, communications, and spintronics as well as other emerging technologies. Modern Ferrites will earn a place on the bookshelves of engineers and scientists interested in the ever-expanding technologies reliant upon ferrite materials and new processing methodologies. Modern Ferrites Volume 2: Emerging Technologies and Applications is also available (ISBN: 9781394156139).




Modern Ferrite Technology


Book Description

Revision of a classic reference on ferrite technology Includes fundamentals as well as applications Covers new areas such as nanoferrites, new high frequency power supply materials, magnetoresistive ferrites for magnetic recording




MAGNETISATION IN TERNARY SPINEL FERRITES


Book Description

The word "magnet" refers to the material having both directive and attractive property. The magnet with its two such distinct and significant properties have attracted common man as well as researcher because of its obvious applications in various fields like electronic, electrical telecommunication, biomedical, power, food, automobile, construction, recording media and computer industries. Research in this area has gained momentum since 1914. It focuses on synthesis, characterization, functionalization of the properties of these materials for betterment of human life in the society.




Magnetoelectronics of Microwaves and Extremely High Frequencies in Ferrite Films


Book Description

This book is devoted to an entirely new direction of the magnetoelectronics of millimetric waves in layered structures containing epitaxial ferrite films. End of chapter references provide additional background information on the topics discussed.




Electronic Ceramics


Book Description

This book provides a state-of-the-art survey of the behaviour and principal applications of electronic ceramics including their magnetic, ferroelectric, electronic and ionic conducting properties.




Structural, electrical and magnetic properties of rare earth doped spinel ferrites


Book Description

The first natural magnetic material found to man in pre historic time was magnetite (Fe3O4), which is now known as ferrous ferrite. The story of ferrites begins with the search for ferromagnetic material of usual high resistivity to obtain reasonable low eddy current losses. When ferrimagnetic materials placed in alternating field, eddy current generates into them, which dissipates energy. These losses can be reduced by lamination of ferrimagnetic core to restrict eddy current. Since, eddy current losses are inversely proportional to the resistivity; they can be minimized by use of magnetic materials of high resistivity. Ferrites having resistivity of up to 107Ωm as compared to 10-7Ωm of iron, reduces the eddy current losses in them to a negligible value, even at microwave frequencies.




Advanced Sensor and Detection Materials


Book Description

Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.