Aspects of Modern Magnetism


Book Description

This book, a collection of works by leading figures in the field, is devoted to the latest developments of modern magnetism including micromagnetism, nanomagnetic materials, magnetic multilayers, macroscopic quantum magnetism, rare-earth intermetallic compounds, giant magnetoresistance, and their applications. Some new concepts and theories are also included for a better understanding of these novel phenomena.This book can be used as an advanced text book on magnetism and materials science for graduate students in physics and materials science departments. It is also useful as a research reference for condensed matter physicists and materials scientists.




Modern Magnetism


Book Description

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Modern Permanent Magnets


Book Description

Modern Permanent Magnets provides an update on the status and recent technical developments that have occurred in the various families of permanent magnets produced today. The book gives an overview of the key advances of permanent magnet materials that have occurred in the last twenty years. Sections cover the history of permanent magnets, their fundamental properties, an overview of the important families of permanent magnets, coatings used to protect permanent magnets and the various tests used to confirm specifications are discussed. Finally, the major applications for each family of permanent magnets and the size of the market is provided. The book also includes an Appendix that provides a Glossary of Magnetic Terms to assist the readers in better understanding the technical terms used in other chapters. This book is an ideal resource for materials scientists and engineers working in academia and industry R&D. - Provides an in-depth overview of all of the important families of permanent magnets produced today - Includes background information on the fundamental properties of permanent magnets, major applications of each family of permanent magnets, and advances in coatings and coating technology - Reviews the fundamentals of permanent magnet design




Modern Techniques for Characterizing Magnetic Materials


Book Description

Modern Techniques for Characterizing Magnetic Materials provides an extensive overview of novel characterization tools for magnetic materials including neutron, photon and electron scatterings and other microscopy techniques by world-renowned scientists. This interdisciplinary reference describes all available techniques to characterize and to understand magnetic materials, techniques that cover a wide range of length scales and belong to different scientific communities. The diverse contributions enhance cross-discipline communication, while also identifying both the drawbacks and advantages of different techniques, which can result in deriving effective combinations of techniques that are especially fruitful at nanometer scales. It will be a valuable resource for all graduate students, researchers, engineers and scientists who are interested in magnetic materials including their crystal structure, electronic structure, magnetization dynamics and their associated magnetic properties and underlying magnetism.




Modern Magnetic Materials


Book Description

A truly modern treatment of materials that can hold a magnetic field. * Covers cutting-edge materials with many important technical applications. * Includes examples and problems along with computer solutions.




Modern Theory of Magnetism in Metals and Alloys


Book Description

This book describes theoretical aspects of the metallic magnetism from metals to disordered alloys to amorphous alloys both at the ground state and at finite temperatures. The book gives an introduction to the metallic magnetism, and treats effects of electron correlations on magnetism, spin fluctuations in metallic magnetism, formation of complex magnetic structures, a variety of magnetism due to configurational disorder in alloys as well as a new magnetism caused by the structural disorder in amorphous alloys, especially the itinerant-electron spin glasses. The readers will find that all these topics can be understood systematically by means of the spin-fluctuation theories based on the functional integral method.




Magnetism


Book Description

Professor Lee takes the reader through the early experiments and historical accomplishments, explaining principles behind such phenomena as magnetic behavior, paramagnetism and diamagnetism, ferrimagnetism, the earth's magnetism, and more. Over 60 graphic representations and 32 pages of photographs aid the author's fine exposition.







Modern Magnetism


Book Description




Spin Arrangements and Crystal Structure, Domains, and Micromagnetics


Book Description

Spin Arrangements and Crystal Structure, Domains, and Micromagnetics deals with cooperative phenomena characterized by ordered arrangements of magnetic moments subject to strong mutual interactions. The emphasis is on the ferromagnetism, ferrimagnetism, and antiferromagnetism of magnetically ordered materials such as insulators and metals. Both theoretical and experimental points of view are presented. Comprised of 12 chapters, this volume begins with an introduction to magnetism and crystal structure in nonmetals, followed by an evaluation of exchange interactions from experimental data. Subsequent chapters focus on the theory of neutron scattering by magnetic crystals; spin configuration of ionic structures; spin arrangements in metals; and permanent magnet materials. Fine particles, thin films, and exchange anisotropy are also considered, with particular reference to the effects of finite dimensions and interfaces on the basic properties of ferromagnets. The book also examines micromagnetics; domains and domain walls; the structure and switching of permalloy films; magnetization reversal in nonmetallic ferromagnets; and preparation and crystal synthesis of magnetic oxides. This book will be a useful resource for professionals and students with physics or chemistry backgrounds.