Engineering Optimization


Book Description

A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.




Modern Optimization Methods for Science, Engineering and Technology


Book Description

Achieving a better solution or improving the performance of existing system design is an ongoing a process for which scientists, engineers, mathematicians and researchers have been striving for many years. Ever increasingly practical and robust methods have been developed, and every new generation of computers with their increased power and speed allows for the development and wider application of new types of solutions. This book defines the fundamentals, background and theoretical concepts of optimization principles in a comprehensive manner along with their potential applications and implementation strategies. It encompasses linear programming, multivariable methods for risk assessment, nonlinear methods, ant colony optimization, particle swarm optimization, multi-criterion and topology optimization, learning classifier, case studies on six sigma, performance measures and evaluation, multi-objective optimization problems, machine learning approaches, genetic algorithms and quality of service optimizations. The book will be very useful for wide spectrum of target readers including students and researchers in academia and industry.




Modern Optimization with R


Book Description

The goal of this book is to gather in a single work the most relevant concepts related in optimization methods, showing how such theories and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in computer science, information technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R. This new edition integrates the latest R packages through text and code examples. It also discusses new topics, such as: the impact of artificial intelligence and business analytics in modern optimization tasks; the creation of interactive Web applications; usage of parallel computing; and more modern optimization algorithms (e.g., iterated racing, ant colony optimization, grammatical evolution).




Modern Optimization Techniques with Applications in Electric Power Systems


Book Description

This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful. ​




New Optimization Techniques in Engineering


Book Description

Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.




Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics


Book Description

Modern optimization approaches have attracted many research scientists, decision makers and practicing researchers in recent years as powerful intelligent computational techniques for solving several complex real-world problems. The Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics highlights the latest research innovations and applications of algorithms designed for optimization applications within the fields of engineering, IT, and economics. Focusing on a variety of methods and systems as well as practical examples, this book is a significant resource for graduate-level students, decision makers, and researchers in both public and private sectors who are seeking research-based methods for modeling uncertain real-world problems. .




Modern Heuristic Optimization Techniques


Book Description

This book explores how developing solutions with heuristic tools offers two major advantages: shortened development time and more robust systems. It begins with an overview of modern heuristic techniques and goes on to cover specific applications of heuristic approaches to power system problems, such as security assessment, optimal power flow, power system scheduling and operational planning, power generation expansion planning, reactive power planning, transmission and distribution planning, network reconfiguration, power system control, and hybrid systems of heuristic methods.




Classical And Modern Optimization


Book Description

The quest for the optimal is ubiquitous in nature and human behavior. The field of mathematical optimization has a long history and remains active today, particularly in the development of machine learning.Classical and Modern Optimization presents a self-contained overview of classical and modern ideas and methods in approaching optimization problems. The approach is rich and flexible enough to address smooth and non-smooth, convex and non-convex, finite or infinite-dimensional, static or dynamic situations. The first chapters of the book are devoted to the classical toolbox: topology and functional analysis, differential calculus, convex analysis and necessary conditions for differentiable constrained optimization. The remaining chapters are dedicated to more specialized topics and applications.Valuable to a wide audience, including students in mathematics, engineers, data scientists or economists, Classical and Modern Optimization contains more than 200 exercises to assist with self-study or for anyone teaching a third- or fourth-year optimization class.




Modern Methods of Optimization


Book Description

This volume contains the proceedings of the summer school "Modern Methods of Optimization", held at the Schlof3 Thurnau of the University of Bayreuth, October 1-6, 1990. Like other branches of applied mathematics the area of optimization is undergoing a rapid development since the beginning of the computer age. Optimizaiton methods are of increasing importance for both, science and industry. The aim of the summer school was to present state-of-the-art knowledge by inviting 12 specialists from Op timization (and related fields) to present their areas of activity in the form of survey talks. This volume contains 10 of these presentations in slightly extended form. Most lectures started from an undergraduate level and outlinad the developments up to the latest scientifique achievements. This enabled the audience, consisting of about 45 students and young researchers, to get an excellent overview of the latest trends in Optimization as w~ll as a grasp of the breadth of its potential applications. Equally important to the success of the summer school was the "nonmeasurable" part of the activities inherent in such a summer school. Here the inspiring atmosphere of a place like Thurnau helped to establish numerous contacts between "teachers" and "students". The summer school was organized by the Universitii. t Bayreuth together with the Technische Hochschule Darmstadt and was generously sponsored by the Volkswagen stiftung and the Universitii. tsverein Bayreuth. Their interest in the meeting and their support is hereby gratefully acknowledged.




Optimization Techniques and Applications with Examples


Book Description

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.