Modern Music-Inspired Optimization Algorithms for Electric Power Systems


Book Description

In today’s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research; Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data; Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.




Music-Inspired Harmony Search Algorithm


Book Description

Calculus has been used in solving many scientific and engineering problems. For optimization problems, however, the differential calculus technique sometimes has a drawback when the objective function is step-wise, discontinuous, or multi-modal, or when decision variables are discrete rather than continuous. Thus, researchers have recently turned their interests into metaheuristic algorithms that have been inspired by natural phenomena such as evolution, animal behavior, or metallic annealing. This book especially focuses on a music-inspired metaheuristic algorithm, harmony search. Interestingly, there exists an analogy between music and optimization: each musical instrument corresponds to each decision variable; musical note corresponds to variable value; and harmony corresponds to solution vector. Just like musicians in Jazz improvisation play notes randomly or based on experiences in order to find fantastic harmony, variables in the harmony search algorithm have random values or previously-memorized good values in order to find optimal solution.




Nature-Inspired Computing


Book Description

Nature-Inspired Computing: Physics and Chemistry-Based Algorithms provides a comprehensive introduction to the methodologies and algorithms in nature-inspired computing, with an emphasis on applications to real-life engineering problems. The research interest for Nature-inspired Computing has grown considerably exploring different phenomena observed in nature and basic principles of physics, chemistry, and biology. The discipline has reached a mature stage and the field has been well-established. This endeavour is another attempt at investigation into various computational schemes inspired from nature, which are presented in this book with the development of a suitable framework and industrial applications. Designed for senior undergraduates, postgraduates, research students, and professionals, the book is written at a comprehensible level for students who have some basic knowledge of calculus and differential equations, and some exposure to optimization theory. Due to the focus on search and optimization, the book is also appropriate for electrical, control, civil, industrial and manufacturing engineering, business, and economics students, as well as those in computer and information sciences. With the mathematical and programming references and applications in each chapter, the book is self-contained, and can also serve as a reference for researchers and scientists in the fields of system science, natural computing, and optimization.




Exploring Innovative and Successful Applications of Soft Computing


Book Description

The evolution of soft computing applications have offered a multitude of methodologies and techniques that are useful in facilitating new ways to address practical and real scenarios in a variety of fields. Exploring Innovative and Successful Applications of Soft Computing highlights the applications and conclusions associated with soft computing in different technological environments. Providing potential results based on new trends in the development of these services, this book aims to be a reference source for researchers, practitioners, and students interested in the most successful soft computing methods applied to recent problems.




Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance


Book Description

Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.




Search Algorithms and Applications


Book Description

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution search space or among a collection of objects. A solution can be a set of value assignments to variables that will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search algorithms and applications. The chapters are organized into three parts: Population-based and quantum search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering applications.




Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms


Book Description

The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such published resources. These provide us with motivation to analyze the existing research for categorizing and synthesizing it in a meaningful manner. The mission of this book is really important since those algorithms are going to be a new revolution in computer science. We hope it will stimulate the readers to make novel contributions or even start a new paradigm based on nature phenomena. Although structured as a textbook, the book's straightforward, self-contained style will also appeal to a wide audience of professionals, researchers and independent learners. We believe that the book will be instrumental in initiating an integrated approach to complex problems by allowing cross-fertilization of design principles from different design philosophies. The second feature of this book is its comprehensiveness: Through an extensive literature research, there are 134 innovative CI algorithms covered in this book.




Classical and Recent Aspects of Power System Optimization


Book Description

Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems




Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery: Implications in Business, Science, and Engineering


Book Description

Recently, nature has stimulated many successful techniques, algorithms, and computational applications allowing conventionally difficult problems to be solved through novel computing systems. Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery: Implications in Business, Science, and Engineering provides the latest findings in nature-inspired algorithms and their applications for breakthroughs in a wide range of disciplinary fields. This defining reference collection contains chapters written by leading researchers and well-known academicians within the field, offering readers a valuable and enriched accumulation of knowledge.




Computer Aided State Estimation of Electric Power Network


Book Description

Computer Aided State Estimation of Electric Power Networks is a fundamental introduction to the topic of state estimation at an advanced textbook level for teaching a course at either the graduate or undergraduate level, as well as for Post Graduate students and Research Scholars who want to review of the latest techniques and best mathematical approaches for estimating the state of a general system. Theory as well as practice of Distribution System State Estimation (DSSE) is covered with imperative rigidity. The authors present the theory of state estimation clearly providing the right amount of essential information and linked reports in order to enable the researchers and graduate students to apply state estimation techniques across a variety of fields in power systems engineering. A prerequisite knowledge of basic power system operation, control, data acquisition and measurement, in addition to basic statistics is helpful in understanding the book. Key Features include: • Advanced Topics based on Cloud Computing and Standards used for Preparation of Smart Grid • Provides Entire Coding Information for Estimating the State Estimation Topology Performance • Enables both the Researchers and Graduate Students for Pursuing their Research Projects • Covers the Important Topics on Data Attacks and Solution Strategy • Provides an Introduction to Distribution System State Estimation This book includes new contents like Distribution System State Estimation, Data Attacks, Defense strategies, with an introduction to large scale systems based on cloud computing, and an MATLAB training package for graduate students