Modulation Transfer Function in Optical and Electro-optical Systems


Book Description

This tutorial introduces the theory and applications of MTF, used to specify the image quality achieved by an imaging system. It covers basic linear systems theory and the relationship between impulse response, resolution, MTF, OTF, PTF, and CTF. Practical measurement and testing issues are discussed.







Introduction to the Optical Transfer Function


Book Description

This work covers spatial frequency, spread function, wave aberration, and transfer function - and how these concepts are related in an optical system, how they are measured and calculated, and how they may be useful.




A System Engineering Approach to Imaging


Book Description

This textbook addresses imaging from the system engineering point of view, examining advantages and disadvantages of imaging in various spectral regions. Focuses on imaging principles and system concepts, rather than devices. Intended as a senior-year undergraduate or graduate level engineering textbook. A solution manual is included.







Introduction to the Optical Transfer Function


Book Description

This timely publication brings together, in one source, a wealth of information on the optical transfer function. Treats fundamental concepts of spatial frequency, the spread function, wave aberration, and the transfer function. Then relates them to optical systems, including discussion of how they are measured and calculated, and their uses. Treatment is practical, and includes many illustrations.




The Optical Transfer Function of Imaging Systems


Book Description

The Optical Transfer Function of Imaging Systems deals extensively with the theoretical concept of the optical transfer function (OTF), its measurement, and application to imaging devices. The OTF is a mathematical entity describing how well the subject is transferred into an image via the lens. The book focuses on the practical aspects of using and measuring the OTF. It presents the background physics necessary to understand and assess the performance of the great proliferation of electro-optical systems, including image intensifiers, video cameras, and thermal imagers. Assuming a senior undergraduate level of optics knowledge, the book is suitable for graduate courses in optics, electro-optics, and photographic science. In addition, it is a practical guide for systems designers who require a means of assessing and specifying the performance of imaging systems. It is also of interest to physicists and engineers working in all areas of imaging.




Fringe 2005


Book Description

In 1989 the time was hot to create a workshop series dedicated to the dicussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial applications of optical metrology. However, such a workshop must take place in a dynamic environment. The- fore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 new prin- ples of optical shape measurement, setup calibration, phase unwr- ping and nondestructive testing were the focus of discussion, while in 1997 new approaches in multi-sensor metrology, active measu- ment strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was dedicated to - tical methods for micromeasurements, hybrid measurement te- nologies and new sensor solutions for industrial inspection. The fifth workshop takes place in Stuttgart, the capital of the state of Baden- Württemberg and the centre of a region with a long and remarkable tradition in engineering. Thus after Berlin 1989, Bremen 1993, 1997 and 2001, Stuttgart is the third Fringe city where international - perts will meet each other to share new ideas and concepts in optical metrology. This volume contains the papers presented during FRINGE 2005.




Electron Nano-Imaging


Book Description

In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.




Wavefront Optics for Vision Correction


Book Description

This book addresses some of the issues in visual optics with a functional analysis of ocular aberrations, especially for the purpose of vision correction. The basis is the analytical representation of ocular aberrations with a set of orthonormal polynomials, such as Zernike polynomials or the Fourier series. Although the aim of this book is the application of wavefront optics to laser vision correction, most of the theories discussed are equally applicable to other methods of vision correction, such as contact lenses and intraocular lenses.