Lectures on K3 Surfaces


Book Description

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.




Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds


Book Description

In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.




Algebraic Structures and Moduli Spaces


Book Description

This book contains recent and exciting developments on the structure of moduli spaces, with an emphasis on the algebraic structures that underlie this structure. Topics covered include Hilbert schemes of points, moduli of instantons, coherent sheaves and their derived categories, moduli of flat connections, Hodge structures, and the topology of affine varieties. Two beautiful series of lectures are a particularly fine feature of the book. One is an introductory series by Manfred Lehn on the topology and geometry of Hilbert schemes of points on surfaces, and the other, by Hiraku Nakajima and Kota Yoshioka, explains their recent work on the moduli space of instantons over ${\mathbb R 4$. The material is suitable for graduate students and researchers interested in moduli spaces in algebraic geometry, topology, and mathematical physics.




The Geometry of Moduli Spaces of Sheaves


Book Description

This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.




K3 Surfaces and Their Moduli


Book Description

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.




Lectures on K3 Surfaces


Book Description

Simple enough for detailed study, rich enough to show interesting behavior, K3 surfaces illuminate core methods in algebraic geometry.




Kähler Metric and Moduli Spaces


Book Description

Kähler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations. The book discusses basic facts on Einstein metrics in complex geometry; Einstein-Kähler metrics with positive or non-positive Ricci curvature; Yang-Mills connections; and Einstein-Hermitian metrics. The text then describes the tangent sheaves of minimal varieties; Ricci-Flat Kähler metrics on affine algebraic manifolds; and degenerations of Kähler-Einstein. The moduli of Einstein metrics on a K3 surface and degeneration of Type I and the uniformization of complex surfaces are also considered. Mathematicians and graduate students taking differential and analytic geometry will find the book useful.




The Arithmetic and Geometry of Algebraic Cycles


Book Description

The NATO ASI/CRM Summer School at Banff offered a unique, full, and in-depth account of the topic, ranging from introductory courses by leading experts to discussions of the latest developments by all participants. The papers have been organized into three categories: cohomological methods; Chow groups and motives; and arithmetic methods.As a subfield of algebraic geometry, the theory of algebraic cycles has gone through various interactions with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to developments such as a description of Chow groups in terms of algebraic K-theory, the application of the Merkurjev-Suslin theorem to the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge, and of Tate, which compute cycles classgroups respectively in terms of Hodge theory or as the invariants of a Galois group action on étale cohomology, the conjectures of Bloch and Beilinson, which explain the zero or pole of the $L$-function of a variety and interpret the leading non-zero coefficient of its Taylor expansion at a criticalpoint, in terms of arithmetic and geometric invariant of the variety and its cycle class groups.The immense recent progress in the theory of algebraic cycles is based on its many interactions with several other areas of mathematics. This conference was the first to focus on both arithmetic and geometric aspects of algebraic cycles. It brought together leading experts to speak from their various points of view. A unique opportunity was created to explore and view the depth and the breadth of the subject. This volume presents the intriguing results.




Abelian l-Adic Representations and Elliptic Curves


Book Description

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one




Algebraic Geometry


Book Description

This volume contains the proceedings of the Korea-Japan Conference on Algebraic Geometry in honor of Igor Dolgachev on his sixtieth birthday. The articles in this volume explore a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered by this volume are algebraic curve theory, algebraic surface theory, moduli space, automorphic forms, Mordell-Weil lattices, and automorphisms of hyperkahler manifolds. This book is an excellent and rich reference source for researchers.