Molecular Biology of Cardiac Development and Growth


Book Description

This is the only book to specifically combine basic information on molecular biology with current thinking in cardiac development. The authors clearly illustrate that molecular biology has already provided a wealth of new approaches to the investigation of cellular processes at the molecular level and is now making a significant contribution to the understanding of the role played by such mechanisms in cardiac development. Furthermore, it is shown that this rapidly-expanding field provides an insight into the molecular events underlying cardiac malformation and disease.




Cellular and Molecular Pathobiology of Cardiovascular Disease


Book Description

Cellular and Molecular Pathobiology of Cardiovascular Disease focuses on the pathophysiology of common cardiovascular disease in the context of its underlying mechanisms and molecular biology. This book has been developed from the editors' experiences teaching an advanced cardiovascular pathology course for PhD trainees in the biomedical sciences, and trainees in cardiology, pathology, public health, and veterinary medicine. No other single text-reference combines clinical cardiology and cardiovascular pathology with enough molecular content for graduate students in both biomedical research and clinical departments. The text is complemented and supported by a rich variety of photomicrographs, diagrams of molecular relationships, and tables. It is uniquely useful to a wide audience of graduate students and post-doctoral fellows in areas from pathology to physiology, genetics, pharmacology, and more, as well as medical residents in pathology, laboratory medicine, internal medicine, cardiovascular surgery, and cardiology. - Explains how to identify cardiovascular pathologies and compare with normal physiology to aid research - Gives concise explanations of key issues and background reading suggestions - Covers molecular bases of diseases for better understanding of molecular events that precede or accompany the development of pathology







Heart Development


Book Description

Contributors. -- Preface. -- C. Seidman, Introduction. -- I. Origins and Early Morphogenesis: -- P.P.L. Tam and G.C. Schoenwolf, Cardiac Fate Maps: Lineage Allocation, Morphogenetic Movement, and Cell Commitment. -- T. Mikawa, Cardiac Lineages. -- II. Cardiac Induction: -- T.J. Mohun and L.M. Leong, Heart Formation and the Heart Field in Amphibian Embryos. -- T.M. Schultheiss and A.B. Lassar, Vertebrate Heart Induction. -- III. Genetic Dissection of Heart Development: -- R. Bodmer and M. Frasch, Genetic Determination in Drosophilia Heart Development. -- J. Alexander and D.Y.R. Stainier, Mutations Affecting Cardiac Development in Zebrafish. -- R.P. Harvey, C. Biben, and D.A. Elliott, Transcriptional Control and Pattern Formation in the Developing Vertebrate Heart: Studies on NK-2 Class Homeodomain Factors. -- B.L. Black and E.N. Olson, Control of Cardiac Development by the Family of MEF2 Transcription Factors. -- D. Srivastava, Segmental Regulation of Cardiac Development by the Basic He ...




Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."




Cardiovascular Development


Book Description

In 1993, Rolf Bodmer described a gene he named tinman that was required for the formation of the dorsal aorta of the fly. Flies without a functional tinman gene had no heart. Quickly, mammalian counterparts of the tinman gene were identified and found to be expressed by early cardiomyogenic precursors and by cardiomyocytes throughout heart development. Since then, significant progress has been made in the understanding of molecular and genetic determinants of heart formation. An ever growing number of genes have been identified that are required for cardiogenesis, as evidenced by severe abnormalities in cardiac development produced by inactivation in the mouse or inhibition of gene function in other model organisms. Cardiovascular Development covers some of the latest research in the study of heart formation. Volume Editor Rolf Bodmer has assembled a world-class list of contributors whose research uses a variety of animal models and whose findings are certain to enhance our understanding of this exciting field. * Ties together the development of heart morphology and conduction system * The latest developments in vertebrate and invertebrate genetic model systems * Technological advancements in cardiovascular science







Vascular Biology of the Placenta


Book Description

The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.




Developmental Biology


Book Description




Development of the Cardiac Conduction System


Book Description

The pacemaking and conduction system (PCS) is vital for generating and synchronizing the heart beat. Dysfunction of this system can be a direct cause of cardiac conduction disturbance, arrhythmias and sudden cardiac death. A wealth of information has been collected over many years on the unique histological, morphological and phenotypic characteristics of specialized cardiac tissues. The cellular and molecular mechanisms that govern development of the PCS are now starting to be understood. This book draws together contributions from an international and interdisciplinary group of experts working on both basic and clinical aspects of cardiac development. It features reviews of the structure and function of the developing PCS, discussion of the molecular and cellular mechanisms regulating embryological development of this system and studies on the fundamental basis of PCS pathology. The book also considers how novel therapeutic interventions based on understanding of the developmental biology of cardiac pacemaking and conduction tissues might ultimately impact on clinical medicine.