Molecular Biomineralization


Book Description

The concept of ‘biomineralization’ signifies mineralization processes that take place in close association with organic molecules or matrices. The awareness that mineral formation can be guided by organic molecules notably contributed to the understanding of the formation of the inorganic skeletons of living organisms. Modern electron microscopic and spectroscopic analyses have successfully demonstrated the participation of biological systems in several mineralization processes, and prominent examples include the formation of bio-silica in diatoms and sponges. This insight has already made the application of recombinant technology for the production of valuable inorganic polymers, such as bio-silica, possible. This polymer can be formed by silicatein under conditions that cannot be matched by chemical means. Similarly, the efforts described in this book have elucidated that certain organisms, bacteria in deep-sea polymetallic nodules and coccoliths in seamount crusts, are involved in the deposition of marine minerals. Strategies have already been developed to utilize such microorganisms for the biosynthesis and bioleaching of marine deposits. Moreover, studies reveal that bio-polymers enhance the hydroxyapatite formation of bone-forming cells and alter the expression of important regulators of bone resorption, suggesting a potential for bone regeneration and treatment / prevention of osteoporosis.




Mesoscale Chemistry


Book Description

In the last few decades great strides have been made in chemistry at the nanoscale, where the atomic granularity of matter and the exact positions of individual atoms are key determinants of structure and dynamics. Less attention, however, has been paid to the mesoscale-it is at this scale, in the range extending from large molecules (10 nm) through viruses to eukaryotic cells (10 microns), where interesting ensemble effects and the functionality that is critical to macroscopic phenomenon begins to manifest itself and cannot be described by laws on the scale of atoms and molecules alone. To further explore how knowledge about mesoscale phenomena can impact chemical research and development activities and vice versa, the Chemical Sciences Roundtable of the National Research Council convened a workshop on mesoscale chemistry in November 2014. With a focus on the research on chemical phenomena at the mesoscale, participants examined the opportunities that utilizing those behaviors can have for developing new catalysts, adding new functionality to materials, and increasing our understanding of biological and interfacial systems. The workshop also highlighted some of the challenges for analysis and description of mesoscale structures. This report summarizes the presentations and discussion of the workshop.




Handbook of Biomineralization


Book Description

This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. This second volume deals with biometic model systems in biomineralization, including the biomineral approach to bionics, bioinspired materials synthesis and bio-supported materials chemistry, encapsulation and the imaging of internal nanostructures of biominerals. An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists.




Biological Inorganic Chemistry


Book Description

The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters




Biomineralization


Book Description




Biomineralization and Biomaterials


Book Description

Biomineralization is a natural process by which living organisms form minerals in association with organic biostructures to form hybrid biological materials such as bone, enamel, dentine and nacre among others. Scientists have researched the fundamentals of these processes and the unique structures and properties of the resulting mineralized tissues. Inspired by them, new biomaterials for tissue engineering and regenerative medicine have been developed in recent years. Biomineralization and biomaterials: fundamentals and applications looks at the characteristics of these essential processes and natural materials and describes strategies and technologies to biomimetically design and produce biomaterials with improved biological performance. - Provides a thorough overview of the biomineralization process - Presents the most recent information on the natural process by which crystals in tissues form into inorganic structures such as bone, teeth, and other natural mineralized tissues - Investigates methods for improving mineralization - Explores new techniques that will help improve the biomimetic process




Biomineralization Sourcebook


Book Description

What does it mean to be at the forefront of a characterization technique? Novel implementation and research, finding new ways to visualize composites, and new techniques all play a role. Yet with the myriad of advances in the field, keeping up with new and advanced techniques, often from many different areas, has become a challenge. Biomineralizati




Research Methods in Biomineralization Science


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in biomineralization science, and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in biomineralization science - Contains sections on such topics as and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure




Molecular Modeling of Geochemical Reactions


Book Description

Molecular processes in nature affect human health, the availability of resources and the Earth’s climate. Molecular modelling is a powerful and versatile toolbox that complements experimental data and provides insights where direct observation is not currently possible. Molecular Modeling of Geochemical Reactions: An Introduction applies computational chemistry to geochemical problems. Chapters focus on geochemical applications in aqueous, petroleum, organic, environmental, bio- and isotope geochemistry, covering the fundamental theory, practical guidance on applying techniques, and extensive literature reviews in numerous geochemical sub-disciplines. Topics covered include: • Theory and Methods of Computational Chemistry • Force Field Application and Development • Computational Spectroscopy • Thermodynamics • Structure Determination • Geochemical Kinetics This book will be of interest to graduate students and researchers looking to understand geochemical processes on a molecular level. Novice practitioners of molecular modelling, experienced computational chemists, and experimentalists seeking to understand this field will all find information and knowledge of use in their research.




Extracellular Matrix Biomineralization of Dental Tissue Structures


Book Description

This book addresses the structural and biological properties of dental and peridental tissue structures and covers their mineralization process. The book contains a description of dentines, cementum, enamel and bone, including collagens, as well as non-collagenous proteins (SIBLINGs, SLRPs, GAGs, PGs, lipids, and MMPs). The mechanisms of mineralization are described in detail and the book is focused on matrix vesicles, collagen mineralization and the role of non-collagenous extracellular matrix components either as promoters or inhibitors of mineralization. In addition, the matrix components (non-collagenous) of enamel (amelogenin, ameloblastin, enamelin, MMP4, MMP20 and other proteases) are reviewed and their respective roles in dental tissues biomineralizations and tissue turnover are discussed. Additionally, environmental factors involved in enamel / dentin defects are adressed. With state-of-the-art contributions from experts in the respective domains, the book is a useful introduction to the field for junior scientists, interested in dental and peridental tissue biomineralization. It is also an interesting read for advanced scientists and clinicians working in dental research, giving them a broader view of the topic beyond their area of specialization. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.