Molecular Microbial Ecology Manual


Book Description

Microbes are key drivers of the world's ecosystems. The vast majority of the world's diversity and metabolic potential lies within micro-organisms, yet we are just beginning to understand and utilize this ultimate resource of biological diversity. Critical to our exploration of the microbial world are methods that allow for the analysis of organisms that are invisible to our eyes, difficult to distinguish from each other, and often impossible to grow using available culture methods. The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has revealed that we are only familiar with a very small minority of the organisms that carry out key microbial functions in diverse habitats. The Molecular Microbial Ecology Manual, Second Edition (MMEM-II) provides a detailed and user-friendly description of the methods that have made this revolution in microbial ecology possible. However, what is perhaps most exciting about MMEM-II is that it contains a large number of new chapters, highlighting the newest trends in microbial ecology research, which seek to provide more quantitative and statistically robust data, and means of coupling microbial identity and function. In addition, the majority of the proven methods described in MMEM's first version have undergone significant revisions to provide the most up-to-date applications available. The state-of-the-art methods described in MMEM-II have not only been provided by experts in the field, but in most cases by the laboratories that actually first developed and applied the methods, thus providing the MMEM-II user with unique first-hand tips and insight. The new on-line format available forMMEM-II should also add to the utility of MMEM-II by allowing users to search for key topics throughout the manual, skip between interrelated chapters at the push of a button, and by providing immediate availability to protocol updates and new chapters dedicated to future technical developments.




Molecular Microbial Ecology Manual


Book Description

For a long time microbial ecology has been developed as a distinct field within Ecology. In spite of the important role of microorganisms in the environment, this group of 'invisible' organisms remained unaccessable to other ecologists. Detection and identification of microorganisms remain largely dependent on isolation techniques and characterisation of pure cul tures. We now realise that only a minor fraction of the microbial com munity can be cultivated. As a result of the introduction of molecular methods, microbes can now be detected and identified at the DNA/RNA level in their natural environment. This has opened a new field in ecology: Molecular Microbial Ecology. In the present manual we aim to introduce the microbial ecologist to a selected number of current molecular techniques that are relevant in micro bial ecology. The first edition of the manual contains 33 chapters and an equal number of additional chapters will be added this year. Since the field of molecular ecology is in a continuous progress, we aim to update and extend the Manual regularly and will invite anyone to depo sit their new protocols in full detail in the next edition of this Manual. We hope this book finds its place where it was born: at the lab bench! Antoon D.L. Akkermans, Jan Dirk van Elsas and Frans J. de Bruijn March 1995 Molecular Microbial Ecology Manual 1.3.6: 1-8, 1996. © 1996 Kluwer Academic Publishers.




Molecular Microbial Ecology


Book Description

Microoganisms are distributed across every ecosystem, and microbial transformations are fundamental to the operation of the biosphere. Microbial ecology is the study of this interaction between microorganisms and their environment, and arguably represents one of the most important areas of biological research. Yet for many years our study of microbial flora was severely limited: the primary method of culturing microorganisms on media allowed us to study only between 0.1 and 10% of the total microbial flora in any given environment. Molecular Microbial Ecology gives a comprehensive guide to the recent revolution in the study of microorganisms in the environment. Details are given on molecular methods for isolating some of the previously uncultured and numerically dominant microbial groups. PCR-based approaches to studying prokaryotic systematics are described, including ribosomal RNA analysis and stable isotope probing. Later chapters cover DNA hybridisation techniques (including fluorescent in situ hybridisation), as well as genomic and metagenomic approaches to microbial ecology. Gathering together some of the world’s leading experts, this book provides an invaluable introduction to the modern theory and molecular methods used in studying microbial ecology.




Handbook of Molecular Microbial Ecology I


Book Description

The premiere two-volume reference on revelations from studying complex microbial communities in many distinct habitats Metagenomics is an emerging field that has changed the way microbiologists study microorganisms. It involves the genomic analysis of microorganisms by extraction and cloning of DNA from a group of microorganisms, or the direct use of the purified DNA or RNA for sequencing, which allows scientists to bypass the usual protocol of isolating and culturing individual microbial species. This method is now used in laboratories across the globe to study microorganism diversity and for isolating novel medical and industrial compounds. Handbook of Molecular Microbial Ecology is the first comprehensive two-volume reference to cover unculturable microorganisms in a large variety of habitats, which could not previously have been analyzed without metagenomic methodology. It features review articles as well as a large number of case studies, based largely on original publications and written by international experts. This first volume, Metagenomics and Complementary Approaches, covers such topics as: Background information on DNA reassociation and use of 16 rRNA and other DNA fingerprinting approaches Species designation in microbiology Metagenomics: Introduction to the basic tools with examples Consortia and databases Bioinformatics Computer-assisted analysis Complementary approaches—microarrays, metatranscriptomics, metaproteomics, metabolomics, and single cell analysis A special feature of this volume is the highlighting of the databases and computer programs used in each study; they are listed along with their sites in order to facilitate the computer-assisted analysis of the vast amount of data generated by metagenomic studies. Handbook of Molecular Microbial Ecology I is an invaluable reference for researchers in metagenomics, microbiology, and environmental microbiology; those working on the Human Microbiome Project; microbial geneticists; molecular microbial ecologists; and professionals in molecular microbiology and bioinformatics.




Handbook of Molecular Microbial Ecology II


Book Description

The premiere two-volume reference on revelations from studying complex microbial communities in many distinct habitats Metagenomics is an emerging field that has changed the way microbiologists study microorganisms. It involves the genomic analysis of microorganisms by extraction and cloning of DNA from a group of microorganisms, or the direct use of the purified DNA or RNA for sequencing, which allows scientists to bypass the usual protocol of isolating and culturing individual microbial species. This method is now used in laboratories across the globe to study microorganism diversity and for isolating novel medical and industrial compounds. Handbook of Molecular Microbial Ecology is the first comprehensive two-volume reference to cover unculturable microorganisms in a large variety of habitats, which could not previously have been analyzed without metagenomic methodology. It features review articles as well as a large number of case studies, based largely on original publications and written by international experts. This second volume, Metagenomics in Different Habitats, covers such topics as: Viral genomes Metagenomics studies in a variety of habitats, including marine environments and lakes, soil, and human and animal digestive tracts Other habitats, including those involving microbiome diversity in human saliva and functional intestinal metagenomics; diversity of archaea in terrestrial hot springs; and microbial communities living at the surface of building stones Biodegradation Biocatalysts and natural products A special feature of this book is the highlighting of the databases and computer programs used in each study; they are listed along with their sites in order to facilitate the computer-assisted analysis of the vast amount of data generated by metagenomic studies. Such studies in a variety of habitats are described here, which present a large number of different system-dependent approaches in greatly differing habitats. Handbook of Molecular Microbial Ecology II is an invaluable reference for researchers in metagenomics, microbial ecology, microbiology, and environmental microbiology; those working on the Human Microbiome Project; microbial geneticists; and professionals in molecular microbiology and bioinformatics.




Methods in Gut Microbial Ecology for Ruminants


Book Description

Asaresultofvarioushumanactivities,suchasincreaseinhumanpopulation,decrease in arable land due to soil degradation, urbanization, industrialization and associated increase in the demand for livestock products, dramatic changes are occurring in the global ruminant livestock sector. These changes includeshift inthesize of regional livestock populations and in the types of management and feeding systems under which ruminant livestock are held, and increased demand of a wider range of quality attributes from animal agriculture, not just of the products themselves but also of the methods used in their production. The livestock sector will need to respond to newchallengesofincreasinglivestockproductivitywhileprotectingenvironmentand human health and conservingbiodiversity and natural resources. The micro-organisms in the digestive tracts of ruminant livestock have a profound in?uence on the conversion offeedinto end products, which can impact on the- imal and theenvironment. As the livestock sector grows particularly in developing countries, there will be an increasing need to understand these processes for b- ter management and use ofbothfeed and other natural resources that underpinthe development of sustainable feeding systems.




Molecular Microbial Ecology of the Soil


Book Description

Grain legume crops, e.g. common bean (Phaseolus vulgaris L.), and soyabeans (Glycine max L.) are amongst the main sources of protein in Africa, Asia and Latin America. Their high protein content derive from their ability, in symbiosis with Rhizobium bacteria, to fix atmospheric nitrogen. Incorporating contributions from molecular biologists, microbiologists, plant breeders and soil scientists, this volume reports the results of an FAO/IAEA Co-ordinated Research Programme (1992-1996), whose main objective was to develop molecular biological methods to study rhizobial ecology. Use of better tracking methods will help enhance biological nitrogen fixation and thus grain legume yields, while reducing their reliance on soil- and/or fertilizer-nitrogen. This volume will be invaluable to scientists working on biological nitrogen fixation, soil microbial ecology and legume production.




Handbook of Molecular Microbial Ecology I


Book Description

The premiere two-volume reference on revelations from studying complex microbial communities in many distinct habitats Metagenomics is an emerging field that has changed the way microbiologists study microorganisms. It involves the genomic analysis of microorganisms by extraction and cloning of DNA from a group of microorganisms, or the direct use of the purified DNA or RNA for sequencing, which allows scientists to bypass the usual protocol of isolating and culturing individual microbial species. This method is now used in laboratories across the globe to study microorganism diversity and for isolating novel medical and industrial compounds. Handbook of Molecular Microbial Ecology is the first comprehensive two-volume reference to cover unculturable microorganisms in a large variety of habitats, which could not previously have been analyzed without metagenomic methodology. It features review articles as well as a large number of case studies, based largely on original publications and written by international experts. This first volume, Metagenomics and Complementary Approaches, covers such topics as: Background information on DNA reassociation and use of 16 rRNA and other DNA fingerprinting approaches Species designation in microbiology Metagenomics: Introduction to the basic tools with examples Consortia and databases Bioinformatics Computer-assisted analysis Complementary approaches—microarrays, metatranscriptomics, metaproteomics, metabolomics, and single cell analysis A special feature of this volume is the highlighting of the databases and computer programs used in each study; they are listed along with their sites in order to facilitate the computer-assisted analysis of the vast amount of data generated by metagenomic studies. Handbook of Molecular Microbial Ecology I is an invaluable reference for researchers in metagenomics, microbiology, and environmental microbiology; those working on the Human Microbiome Project; microbial geneticists; molecular microbial ecologists; and professionals in molecular microbiology and bioinformatics.




Manual of Environmental Microbiology


Book Description

The single most comprehensive resource for environmental microbiology Environmental microbiology, the study of the roles that microbes play in all planetary environments, is one of the most important areas of scientific research. The Manual of Environmental Microbiology, Fourth Edition, provides comprehensive coverage of this critical and growing field. Thoroughly updated and revised, the Manual is the definitive reference for information on microbes in air, water, and soil and their impact on human health and welfare. Written in accessible, clear prose, the manual covers four broad areas: general methodologies, environmental public health microbiology, microbial ecology, and biodegradation and biotransformation. This wealth of information is divided into 18 sections each containing chapters written by acknowledged topical experts from the international community. Specifically, this new edition of the Manual Contains completely new sections covering microbial risk assessment, quality control, and microbial source tracking Incorporates a summary of the latest methodologies used to study microorganisms in various environments Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments The Manual of Environmental Microbiology is an essential reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.




Microbial Ecology of Activated Sludge


Book Description

Microbial Ecology of Activated Sludge, written for both microbiologists and engineers, critically reviews our current understanding of the microbiology of activated sludge, the most commonly used process for treating both domestic and industrial wastes. The contributors are all internationally recognized as leading research workers in activated sludge microbiology, and all have made valuable contributions to our present understanding of the process. The book pays particular attention to how the application of molecular methods has changed our perceptions of the identity of the filamentous bacteria causing the operational disorders of bulking and foaming, and the bacteria responsible for nitrification and denitrification and phosphorus accumulation in nutrient removal processes. Special attention is given to how it is now becoming possible to relate the composition of the community of microbes present in activated sludge, and the in situ function of individual populations there, and how such information might be used to manage and control these systems better. Detailed descriptions of some of these molecular methods are provided to allow newcomers to this field of study an opportunity to apply them in their research. Comprehensive descriptions of organisms of interest and importance are also given, together with high quality photos of activated sludge microbes. Activated sludge processes have been used globally for nearly 100 years, and yet we still know very little of how they work. In the past 15 years the advent of molecular culture independent methods of study have provided tools enabling microbiologists to understand which organisms are present in activated sludge, and critically, what they might be doing there. Microbial Ecology of Activated Sludge will be the first book available to deal comprehensively with the very exciting new information from applying these methods, and their impact on how we now view microbiologically mediated processes taking place there. As such it will be essential reading for microbial ecologists, environmental biotechnologists and engineers involved in designing and managing these plants. It will also be suitable for postgraduate students working in this field.