Molecular Physics


Book Description

The richly illustrated book comprehensively explains the important principles of diatomic and polyatomic molecules and their spectra in two separate, distinct parts. The first part concentrates on the theoretical aspects of molecular physics, such as the vibration, rotation, electronic states, potential curves, and spectra of molecules. The different methods of approximation for the calculation of electronic wave functions and their energy are also covered. The introduction of basics terms used in group theory and their meaning in molecular physics enables an elegant description of polyatomic molecules and their symmetries. Molecular spectra and the dynamic processes involved in their excited states are given its own chapter. The theoretical part then concludes with a discussion of the field of Van der Waals molecules and clusters. The second part is devoted entirely to experimental techniques, such as laser, Fourier, NMR, and ESR spectroscopies, used in the fields of physics, chemistry, biology, and material science. Time-resolved measurements and the influence of chemical reactions by coherent controls are also treated. A list of general textbooks and specialized literature is provided for further reading. With specific examples, definitions, and notes integrated within the text to aid understanding, this is suitable for undergraduates and graduates in physics and chemistry with a knowledge of atomic physics and familiar with the basics of quantum mechanics.




Symmetry Theory in Molecular Physics with Mathematica


Book Description

Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.




The Fundamentals of Atomic and Molecular Physics


Book Description

The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic molecules, developed from the very basic components, is extremely useful for students considering graduate studies in any area of physics.







Molecular Physics and Elements of Quantum Chemistry


Book Description

This textbook introduces the molecular and quantum chemistry needed to understand the physical properties of molecules and their chemical bonds. It follows the authors' earlier textbook "The Physics of Atoms and Quanta" and presents both experimental and theoretical fundamentals for students in physics and physical and theoretical chemistry. The new edition treats new developments in areas such as high-resolution two-photon spectroscopy, ultrashort pulse spectroscopy, photoelectron spectroscopy, optical investigation of single molecules in condensed phase, electroluminescence, and light-emitting diodes.




Physics in Molecular Biology


Book Description

This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.




Molecular Physics


Book Description

This book combines in one concise volume the diverse work of several similar books in the market. Each chapter is self-contained and designed to serve the needs of graduates and undergraduates in physics, biochemistry and chemistry. Numerous illustrations accompany the material and more than 60 problems in molecular physics are worked out. Tedious mathematics that obscures the essence of physics is avoided. Though mainly theoretical, many important experimental aspects are included and discussed. It aims at teaching, and not commenting on scientific knowledge. An essential compendium, it can be used both as a textbook and a reference.The main features covered include: Quantum-mechanical treatment of molecular physics; theoretical treatment of molecular spectra and experimental techniques in spectroscopy; interatomic interactions, potentials, molecular stability, energy levels, bonds, rotational and vibrational states, anharmonicity, polarization; theoretical consideration of real molecules. Resonance methods (NMR, NQR, EPR and ENDOR. Theory, experimental apparatus, techniques, numerical results, applications and utility thereof).




Symmetry Principles in Solid State and Molecular Physics


Book Description

High-level text applies group theory to physics problems, develops methods for solving molecular vibration problems and for determining the form of crystal tensors, develops translational properties of crystals, more. 1974 edition.




Molecular Physics and Hypersonic Flows


Book Description

Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibration-dissociation processes as they affect hypersonic flows. Special emphasis is given to the interfacing of non-equilibrium models with computational fluid dynamics methods. Finally, the last part of the book deals with the application of direct Monte Carlo methods in describing rarefied flows.




Molecular Beams in Physics and Chemistry


Book Description

This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.