Genome Engineering for Crop Improvement


Book Description

This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.




Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding


Book Description

This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.




Advancement in Crop Improvement Techniques


Book Description

Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research. - Reviews techniques used for crop improvement, from selection and crossing over, to microorganismal approaches - Explores the role of conventional biotechnology in crop improvement - Summarizes the combined approaches of cytogenetics and biotechnology for crop improvement, including the importance of molecular techniques in this process - Focuses on the emerging role of bioinformatics for crop improvement




CRISPR and RNAi Systems


Book Description

Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems. - Shows how nanotechnology is being used as the basis for new solutions for more efficient plant breeding and plant protection - Outlines the major techniques and applications of both CRISPR and RNAi technologies - Assesses the major challenges of escalating these technologies on a mass scale




Gene Editing in Plants


Book Description

Gene Editing in Plants, Volume 149 aims to provide the reader with an up-to-date survey of cutting-edge research with gene editing tools and an overview of the implications of this research on the nutritional quality of fruits, vegetables and grains. New chapters in the updated volume include topics relating to Genome Engineering and Agriculture: Opportunities and Challenges, the Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean, the Use of Zinc-Finger Nucleases for Crop Improvement, Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus, and Gene Editing With TALEN and CRISPR/Cas in Rice. This ongoing serial contain contributions from leading scientists and researchers in the field of gene editing in plants who describe the results of their own research in this rapidly expanding area of science. - Shows the importance of revolutionary gene editing technology on plant biology research and its application to agricultural production - Provides insight into what may lie ahead in this rapidly expanding area of plant research and development - Contains contributions from major leaders in the field of plant gene editing




Molecular Plant Breeding and Genome Editing Tools for Crop Improvement


Book Description

Plant breeders have used mutagenic agents to create variability for their use in crop improvement. However, application of mutagenic agents has its own drawbacks, such as non-specificity and random nature, simultaneous effect on large numbers of genes, and induction of chromosomal aberrations. To overcome these limitations, several genome editing systems have been developed with the aid of cutting-edge technology rooted in the expertise of several research fields. Molecular Plant Breeding and Genome Editing Tools for Crop Improvement is a pivotal reference source that provides an interdisciplinary approach to crop breeding through genetics. Featuring coverage of a broad range of topics including software, molecular markers, and plant variety identification, this book is ideally designed for agriculturalists, biologists, engineers, advocates, policymakers, researchers, academicians, and students.




Genetic Engineering of Plants


Book Description

"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."




Genetically Engineered Crops


Book Description

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.




Plant Genetics and Molecular Biology


Book Description

This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture.




Plant Breeding: Past, Present and Future


Book Description

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.