More Sets, Graphs and Numbers


Book Description

This volume honours the eminent mathematicians Vera Sos and Andras Hajnal. The book includes survey articles reviewing classical theorems, as well as new, state-of-the-art results. Also presented are cutting edge expository research papers with new theorems and proofs in the area of the classical Hungarian subjects, like extremal combinatorics, colorings, combinatorial number theory, etc. The open problems and the latest results in the papers are sure to inspire further research.




Crossing Numbers of Graphs


Book Description

Crossing Numbers of Graphs is the first book devoted to the crossing number, an increasingly popular object of study with surprising connections. The field has matured into a large body of work, which includes identifiable core results and techniques. The book presents a wide variety of ideas and techniques in topological graph theory, discrete geometry, and computer science. The first part of the text deals with traditional crossing number, crossing number values, crossing lemma, related parameters, computational complexity, and algorithms. The second part includes the rich history of alternative crossing numbers, the rectilinear crossing number, the pair crossing number, and the independent odd crossing number.It also includes applications of the crossing number outside topological graph theory. Aimed at graduate students and professionals in both mathematics and computer science The first book of its kind devoted to the topic Authored by a noted authority in crossing numbers




Graph Drawing


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 21st International Symposium on Graph Drawing, GD 2013, held in Bordeaux, France, in September 2013. The 42 revised full papers presented together with 12 revised short papers, 3 invited talks and 1 poster description were carefully reviewed and selected from 110 submissions. The papers are organized in topical sections on upward drawings, planarity, beyond planarity, geometric representations, 3D et al., universality, practical graph drawing, subgraphs, crossings, geometric graphs and geographic networks, angular restrictions, grids, curves and routes. The book also contains a short description of the graph drawing contest.




Graph Theory and Additive Combinatorics


Book Description

An introductory text covering classical and modern developments in graph theory and additive combinatorics, based on Zhao's MIT course.




Graph Drawing and Network Visualization


Book Description

This book constitutes the refereed proceedings of the 27th International Symposium on Graph Drawing and Network Visualization, GD 2019, held in Prague, Czech Republic, in September 2019. The 42 papers and 12 posters presented in this volume were carefully reviewed and selected from 113 submissions. They were organized into the following topical sections: Cartograms and Intersection Graphs, Geometric Graph Theory, Clustering, Quality Metrics, Arrangements, A Low Number of Crossings, Best Paper in Track 1, Morphing and Planarity, Parameterized Complexity, Collinearities, Topological Graph Theory, Best Paper in Track 2, Level Planarity, Graph Drawing Contest Report, and Poster Abstracts.




Beyond Planar Graphs


Book Description

This book is the first general and extensive review on the algorithmics and mathematical results of beyond planar graphs. Most real-world data sets are relational and can be modelled as graphs consisting of vertices and edges. Planar graphs are fundamental for both graph theory and graph algorithms and are extensively studied. Structural properties and fundamental algorithms for planar graphs have been discovered. However, most real-world graphs, such as social networks and biological networks, are non-planar. To analyze and visualize such real-world networks, it is necessary to solve fundamental mathematical and algorithmic research questions on sparse non-planar graphs, called beyond planar graphs.This book is based on the National Institute of Informatics (NII) Shonan Meeting on algorithmics on beyond planar graphs held in Japan in November, 2016. The book consists of 13 chapters that represent recent advances in various areas of beyond planar graph research. The main aims and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental research questions and new research directions; and 3) to foster cross-disciplinary research collaboration between computer science (graph drawing and computational geometry) and mathematics (graph theory and combinatorics). New algorithms for beyond planar graphs will be in high demand by practitioners in various application domains to solve complex visualization problems. This book therefore will be a valuable resource for researchers in graph theory, algorithms, and theoretical computer science, and will stimulate further deep scientific investigations into many areas of beyond planar graphs.




Graph Theory


Book Description

This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In an effort to aid in the creation and dissemination of open problems, which is crucial to the growth and development of a field, the editors requested the speakers, as well as notable experts in graph theory, to contribute to these volumes.




Brooks' Theorem


Book Description

Brooks' Theorem (1941) is one of the most famous and fundamental theorems in graph theory -- it is mentioned/treated in all general monographs on graph theory. It has sparked research in several directions. This book presents a comprehensive overview of this development and see it in context. It describes results, both early and recent, and explains relations: the various proofs, the many extensions and similar results for other graph parameters. It serves as a valuable reference to a wealth of information, now scattered in journals, proceedings and dissertations. The reader gets easy access to this wealth of information in comprehensive form, including best known proofs of the results described. Each chapter ends in a note section with historical remarks, comments and further results. The book is also suitable for graduate courses in graph theory and includes exercises. The book is intended for readers wanting to dig deeper into graph coloring theory than what is possible in the existing book literature. There is a comprehensive list of references to original sources.




Surveys on Discrete and Computational Geometry


Book Description

This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.




A Course on the Web Graph


Book Description

"A Course on the Web Graph provides a comprehensive introduction to state-of-the-art research on the applications of graph theory to real-world networks such as the web graph. It is the first mathematically rigorous textbook discussing both models of the web graph and algorithms for searching the web. After introducing key tools required for the study of web graph mathematics, an overview is given of the most widely studied models for the web graph. A discussion of popular web search algorithms, e.g. PageRank, is followed by additional topics, such as applications of infinite graph theory to the web graph, spectral properties of power law graphs, domination in the web graph, and the spread of viruses in networks. The book is based on a graduate course taught at the AARMS 2006 Summer School at Dalhousie University. As such it is self-contained and includes over 100 exercises. The reader of the book will gain a working knowledge of current research in graph theory and its modern applications. In addition, the reader will learn first-hand about models of the web, and the mathematics underlying modern search engines."--Publisher's description.