Multi-Scale Investigations in Soot Formation and Chemical Vapor Deposition


Book Description

Progress is made in this thesis in understanding the complex multi-scale chemical and physical processes governing the formation of condensed phase material from gaseous species. The formation of soot through combustion and the synthesis of functional nanomaterial through chemical vapor deposition (CVD) are examined. We first attempt to characterize the sooting tendencies of alternative fuels using different techniques. A new numerical model based on modified flamelet equations is used along with a modified chemical mechanism to predict the effect of fuel molecular structure on soot yield in gasoline surrogates. These simulations provide trends on sooting behavior and are one-dimensional calculations that neglect other phenomenon that govern soot yield and distribution. To determine how other factors influence sooting behavior in laminar flames we carry out experimental and numerical studies to understand how the addition of oxygen to the oxidizer changes soot yield and distribution. Finite-rate chemistry based Direct Numerical Simulations (DNS) are carried out for a series of methane/air flames with increasing Oxygen Index (OI) using an extensively validated, semi-detailed chemical kinetic mechanism, along with an aggregate-based soot model and the results are compared with experimental measurements. It is seen that the effect of variable OI is well captured for major flame characteristics including flame heights, soot yield, and distribution by the numerical simulations when compared to the experimental data. This study is however confined to a small fuel that may not represent behavior seen in real fuels or the constituents that make up these gasoline fuels or their surrogates. Thus, we examine the effects of premixing on soot processes in an iso-octane coflow laminar flame at atmospheric pressure. Iso-octane is chosen as a higher molecular weight fuel as it is an important component of gasoline and its surrogates. Flames at different levels of premixing are investigated ranging from jet equivalence ratios of 1 (non-premixed), 24, 12, and 6. Numerical simulations are compared against experimental measurements and good agreement is seen in soot yield and soot spatial distributions with increasing levels of premixing. While the above studies for soot were carried out for laminar flames combustion devices frequently operate at conditions that lead to turbulent flow. Therefore, to understand how soot is affected by turbulence we computationally study the effects large Polycyclic Atromatic Hydrocarbons species (PAH) have on soot yield and distribution in turbulent non-premixed sooting jet flames using ethylene and and jet fuel surrogate (JP-8). The effects of large PAH on soot are highlighted by comparing the PAH profiles, soot nucleation rate, and soot volume fraction distributions obtained from both simulations for each test flame. Comparisons are also made with experiments when available and further analysis is performed to determine the cause of the observed behavior. Finally, a new multi-scale model is proposed for the computational modeling of the synthesis of functional nanomaterials using CVD. The proposed model is applied to a W(CO)6/H2Se system that has been used by researchers at Penn State to perform WSe2 crystal growth. A force-field for W/C/O/H/Se is developed and favorable agreement is seen when compared to QM data. A reaction mechanism leading from W(CO)6 and H2Se to the crystal precursor is then developed and used in a reacting flow simulation of the custom CVD chamber at Penn State. The bulk reacting flow numerical predictions show promising results for the gas-phase and precursor species, while additional work is still being performed to make the method more robust.




Soot Formation in Combustion


Book Description

Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:










Chemical Vapour Deposition (CVD)


Book Description

This book offers a timely and complete overview on chemical vapour deposition (CVD) and its variants for the processing of nanoparticles, nanowires, nanotubes, nanocomposite coatings, thin and thick films, and composites. Chapters discuss key aspects, from processing, material structure and properties to practical use, cost considerations, versatility, and sustainability. The author presents a comprehensive overview of CVD and its potential in producing high performance, cost-effective nanomaterials and thin and thick films. Features Provides an up-to-date introduction to CVD technology for the fabrication of nanomaterials, nanostructured films, and composite coatings Discusses processing, structure, functionalization, properties, and use in clean energy, engineering, and biomedical grand challenges Covers thin and thick films and composites Compares CVD with other processing techniques in terms of structure/properties, cost, versatility, and sustainability Kwang-Leong Choy is the Director of the UCL Centre for Materials Discovery and Professor of Materials Discovery in the Institute for Materials Discovery at the University College London. She earned her D.Phil. from the University of Oxford, and is the recipient of numerous honors including the Hetherington Prize, Oxford Metallurgical Society Award, and Grunfeld Medal and Prize from the Institute of Materials (UK). She is an elected fellow of the Institute of Materials, Minerals and Mining, and the Royal Society of Chemistry.




Computational Fluid Dynamics Review 2010


Book Description

This volume contains 25 review articles by experts which provide up-to-date information about the recent progress in computational fluid dynamics (CFD). Due to the multidisciplinary nature of CFD, it is difficult to keep up with all the important developments in related areas. CFD Review 2010 would therefore be useful to researchers by covering the state-of-the-art in this fast-developing field.




Theoretical and Numerical Combustion


Book Description

Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,




Directory of Graduate Research


Book Description

Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.




Particulate Carbon


Book Description

The goal of the symposium, "Particulate Carbon: Formation During Combustion", held at the General Motors Research Laboratories on October 15 and 16, 1980, was to discuss fundamental aspects of soot formation and oxidation in combustion systems and to stimulate new research by extensive interactions among the participants. This book contains lhe papers and discussions of that symposium, the 26th in an annual series covering many different disciplines which are timely and of interest to both General Motors and the technical community at large. The subject of this symposium has considerable relevance for man in his effort to control and preserve his environment. Emission of particulate carbon into the atmos phere from combustion sources is of concern to scientists and laymen alike. The hope of reducing this emission clearly requires an understanding of its formation during the combustion process, itself an area of considerable long-term research interest. It is our hope that this symposium has served to summarize what is known so that what remains to be learned can be pursued with greater vigor.




67th Conference on Glass Problems, Volume 28, Issue 1


Book Description

This book provides a state-of-the-art collection of papers presented at the 67th Conference on Glass Problems at The Ohio State University, October 31-November 1, 2006. Provides a state-of-the-art collection of recent papers on glass problems as presented at the 67th Conference on Glass Problems. Sections on furnaces, refractories, raw materials, and environmental issues are included.