Multiblock Grid Generation


Book Description

Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'.




Handbook of Grid Generation


Book Description

Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.




Basic Structured Grid Generation


Book Description

Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques. - A practical, straightforward approach to this complex subject for engineers and students. - A key technique for modelling physical systems.




Grid Generation Methods


Book Description

This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Proceedings of the 22nd International Meshing Roundtable


Book Description

This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.




MEGAFLOW - Numerical Flow Simulation for Aircraft Design


Book Description

The aerospace industry increasingly relies on advanced numerical simulation tools in the early design phase. This volume provides the results of a German initiative which combines many of the CFD development activities from the German Aerospace Center (DLR), universities, and aircraft industry. Numerical algorithms for structured and hybrid Navier-Stokes solvers are presented in detail. The capabilities of the software for complex industrial applications are demonstrated.




Frontiers Of Computational Fluid Dynamics 1998


Book Description

The first volume of Frontiers of Computational Fluid Dynamics was published in 1994 and was dedicated to Prof Antony Jameson. The present volume is dedicated to Prof Earll Murman in appreciation of his original contributions to this field.The book covers the following topics:Transonic and Hypersonic AerodynamicsAlgorithm Developments and Computational TechniquesImpact of High Performance ComputingApplications in Aeronautics and BeyondIndustrial PerspectivesEngineering EducationThe book contains 25 chapters written by leading researchers from academia, government laboratories, and industry.




Grid Generation Methods


Book Description

This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.