Multidimensional Inverse and Ill-Posed Problems for Differential Equations


Book Description

Inverse problems are usually nonlinear and are separated into one-dimensional and multidimensional problems, depending on whether the sought function (or functions) is a function of one variable or of many. Multidimensionality of inverse problems has particular value at present, because practice shows that many investigating processes are described by an equation, of which the co-efficient essentially depends on many variables. This monograph is devoted to statements of multidimensional inverse problems, in particular to methods of their investigation. Questions of the uniqueness of solution, solvability and stability are studied. Methods to construct a solution are given and, in certain cases, inversion formulas are given as well. Concrete applications of the theory developed here are also given. Where possible, the author has stopped to consider the method of investigation of the problems, thereby sometimes losing generality and quantity of the problems, which can be examined by such a method. The book should be of interet to researchers in the field of applied mathematics, geophysics and mathematical biology.




Multidimensional Inverse and Ill-Posed Problems for Differential Equations:


Book Description

This monograph is devoted to statements of multidimensional inverse problems, in particular to methods of their investigation. Questions of the uniqueness of solution, solvability and stability are studied. Methods to construct a solution are given and, in certain cases, inversion formulas are given as well. Concrete applications of the theory developed here are also given. Where possible, the author has stopped to consider the method of investigation of the problems, thereby sometimes losing generality and quantity of the problems, which can be examined by such a method. The book should be of interet to researchers in the field of applied mathematics, geophysics and mathematical biology.




Volterra Equations and Inverse Problems


Book Description

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.




Introduction to Inverse Problems for Differential Equations


Book Description

This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties. For the second edition, the authors have added two new chapters focusing on real-world applications of inverse problems arising in wave and vibration phenomena. They have also revised the whole text of the first edition.




Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems


Book Description

The authors consider dynamic types of inverse problems in which the additional information is given by the trace of the direct problem on a (usually time-like) surface of the domain. They discuss theoretical and numerical background of the finite-difference scheme inversion, the linearization method, the method of Gel'fand-Levitan-Krein, the boundary control method, and the projection method and prove theorems of convergence, conditional stability, and other properties of the mentioned methods.




Handbook of Linear Partial Differential Equations for Engineers and Scientists


Book Description

Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with




Inverse Problems in Differential Equations


Book Description

No detailed description available for "Inverse Problems in Differential Equations".




Inverse Problems for Partial Differential Equations


Book Description

This monograph is devoted to identification problems of coefficients in equations of mathematical physics. It invesitgates the existence and uniqueness of the solutions for identification coefficient problems in parabolic and hyperbolic equations and equation systems of composite type. The problems are studied with the Cauchy data and equations in which the Fourier transform with respect to the chosen variable is supposed to occur. Differential properties of the solutions for the original direct problems and their behavior under great values of time are studied on the basis of solution properties for direct problems. The identification problems with one or two unknown coefficients are also investigated. For initial boundary value conditions linear and nonlinear parabolic equations are studied.