Multidimensional Modulations in Optical Communication Systems


Book Description

This book analyzes novel possibilities offered to the telecommunication engineer in designing tomorrow’s optical networks. Currently, optical and optoelectronic technologies make possible the realization of high-performance optical fiber communication systems and networks with the adoption of WDM configurations and both linear and nonlinear optical amplifications. The last step for increasing network throughput is represented by the implementation of multidimensional modulation formats in coherent optical communication systems, which enable increasing the bit rate/channel toward 400 Gbit/s/channel and beyond. Following this approach, the main emphasis is placed on innovative optical modulations. Multidimensional Modulations in Optical Communication Systems is an essential guide to the world of innovative optical communications from the point of view of growing capacity and security. It guides researchers and industries with the aim to exploring future applications for optical communications.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.




Space-Division Multiplexing in Optical Communication Systems


Book Description

This book presents new frontiers in data communication. To transcend the physical limitations of current optical communication technologies, totally new multiplexing schemes beyond TDM/WDM, novel transmission optical fibers handling well above Pbit/s capacity, and next-generation optical submarine cable systems will need to be developed. The book offers researchers working at the forefront, as well as advanced Ph.D. students in the area of optical fiber communications systems and related fields, an essential guide to state-of-the-art optical transmission technologies. It explores promising new technologies for the exabit era; namely, the three “M technologies”: multi-level modulation, multi-core fiber, and multi-mode control.




All-Optical Signal Processing


Book Description

This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and fully transparent all-optical networks. The book is written by leaders in the field.




Handbook of High-Order Optical Modulations


Book Description

This book highlights many fundamental aspects of optical fiber transmission engineering while also focusing on current state of the art applications and working examples of digital coherent optical communications. Major engineering themes are reviewed and analyzed in this book, including spectral and time-domain characteristics of multi-level pseudo-random PAM signals, optical QAM and SSB complex modulations and impulse response engineering of linear amplifiers used in next-generation Gbaud transmission systems. This book is balanced between theoretical and numerical simulation approaches, showing numerous working examples developed in Matlab. Presents an in-depth analysis of pseudo-random multi-level signals and high-order complex modulations to support coherent terabit transmission systems; Provides a unified approach to challenging engineering issues encountered in the design of Giga-baud coherent optical transmission systems using high-order complex modulation formats; Reviews engineering themes and provides in-depth analysis, modeling and quantitative examples and solutions of state of the art and future applications.




Advanced Optical Communication Systems and Networks


Book Description

This resource provides the latest details on 5th generation photonic systems that can be readily applied to projects in the field. Moreover, the book provides valuable, time-saving tools for network simulation and modeling. It includes coverage of optical signal transmission systems and networks; a wide range of critical methods and techniques, such as MIMO (multiple-input and multiple-output) by employing spatial modes in few-mode and multicore optical fiber; OFDM (orthogonal frequency-division multiplexing) utilized to enhance the spectral efficiency and to enable elastic optical networking schemes; and advanced modulation and coding schemes to approach the Shannon's channel capacity limit. There are detailed discussions on the basic principles and applications of high-speed digital signal processing, as well as description of the most relevant post-detection compensation techniques




Springer Handbook of Optical Networks


Book Description

This handbook is an authoritative, comprehensive reference on optical networks, the backbone of today’s communication and information society. The book reviews the many underlying technologies that enable the global optical communications infrastructure, but also explains current research trends targeted towards continued capacity scaling and enhanced networking flexibility in support of an unabated traffic growth fueled by ever-emerging new applications. The book is divided into four parts: Optical Subsystems for Transmission and Switching, Core Networks, Datacenter and Super-Computer Networking, and Optical Access and Wireless Networks. Each chapter is written by world-renown experts that represent academia, industry, and international government and regulatory agencies. Every chapter provides a complete picture of its field, from entry-level information to a snapshot of the respective state-of-the-art technologies to emerging research trends, providing something useful for the novice who wants to get familiar with the field to the expert who wants to get a concise view of future trends.




Optical Fiber Telecommunications Volume VIB


Book Description

Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and investors. Volume A is devoted to components and subsystems, including photonic integrated circuits, multicore and few-mode fibers, photonic crystals, silicon photonics, signal processing, and optical interconnections. Volume B is devoted to systems and networks, including advanced modulation formats, coherent detection, Tb/s channels, space-division multiplexing, reconfigurable networks, broadband access, undersea cable, satellite communications, and microwave photonics. - All the latest technologies and techniques for developing future components and systems - Edited by two winners of the highly prestigious OSA/IEEE John Tyndal award and a President of IEEE's Lasers & Electro-Optics Society (7,000 members) - Written by leading experts in the field, it is the most authoritative and comprehensive reference on optical engineering on the market




Optical Communication Systems


Book Description

Telecommunications have underpinned social interaction and economic activity since the 19th century and have been increasingly reliant on optical fibers since their initial commercial deployment by BT in 1983. Today, mobile phone networks, data centers, and broadband services that facilitate our entertainment, commerce, and increasingly health provision are built on hidden optical fiber networks. However, recently it emerged that the fiber network is beginning to fill up, leading to the talk of a capacity crunch where the capacity still grows but struggles to keep up with the increasing demand. This book, featuring contributions by the suppliers of widely deployed simulation software and academic authors, illustrates the origins of the limited performance of an optical fiber from the engineering, physics, and information theoretic viewpoints. Solutions are then discussed by pioneers in each of the respective fields, with near-term solutions discussed by industrially based authors, and more speculative high-potential solutions discussed by leading academic groups.