Multilinguality in Knowledge Graphs


Book Description

Content on the web is predominantly written in English, making it inaccessible to those who only speak other languages. Knowledge graphs can store multilingual information, facilitate the creation of multilingual applications, and make content accessible to multiple language communities. This book, Multilinguality in Knowledge Graphs, presents studies which assess and improve the state of labels and languages in knowledge graphs and the application of multilingual information. The author proposes ways of using multilingual knowledge graphs to reduce the gaps in coverage between languages, and the book explores the current state of language distribution in knowledge graphs by developing a framework based on existing standards, frameworks, and guidelines to measure label and language distribution in knowledge graphs. Applying this framework to a dataset representing the web of data, and to Wikidata, both a lack of labeling on the web and a bias towards a small set of languages were found. The book explores how a knowledge of labels and languages can be used in the domain of answering questions, and demonstrates how the framework can be applied to the task of ranking and selecting knowledge graphs for a set of user questions. Transliteration and translation of knowledge graph labels and aliases are also covered, as is the automatic classification of labels into one or the other to train a model for each task. The book provides a wide range of information on working with data and knowledge graphs in less-resourced languages.







Knowledge Graphs


Book Description

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.




Knowledge Graphs and Language Technology


Book Description

This book constitutes the combined refereed proceedings of ISWC Satellite Wor shops KEKIand NLP&DBpedia 2016 which were held in conjunction with ISWC 2016 in Kobe, Japan, inOctober 2016. The 9 papers presented were carefully selected and reviewed from 20submissions. They focus on the use of linguistic linked open data, the linguistic aspectsof DBpedia, the improvement of of DBpedia through NLP applications, on increasing theNLP applications through integrating knowledge from DPpedia.




Knowledge Graphs: Semantics, Machine Learning, and Languages


Book Description

Semantic computing is an integral part of modern technology, an essential component of fields as diverse as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. This book presents the proceedings of SEMANTICS 2023, the 19th International Conference on Semantic Systems, held in Leipzig, Germany, from 20 to 22 September 2023. The conference is a pivotal event for those professionals and researchers actively engaged in harnessing the power of semantic computing, an opportunity to increase their understanding of the subject’s transformative potential while confronting its practical limitations. Attendees include information managers, IT architects, software engineers, and researchers from a broad spectrum of organizations, including research facilities, non-profit entities, public administrations, and the world's largest corporations. For this year’s conference a total of 54 submissions were received in response to a call for papers. These were subjected to a rigorous, double-blind review process, with at least three independent reviews conducted for each submission. The 16 papers included here were ultimately accepted for presentation, with an acceptance rate of 29.6%. Areas covered include novel research challenges in areas such as data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web. The book provides an up-to-date overview, which will be of interest to all those wishing to stay abreast of emerging trends and themes within the vast field of semantic computing.







Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding


Book Description

This book constitutes the refereed proceedings of the 4th China Conference on Knowledge Graph and Semantic Computing, CCKS 2019, held in Hangzhou, China, in August 2019. The 18 revised full papers presented were carefully reviewed and selected from 140 submissions. The papers cover wide research fields including the knowledge graph, the semantic Web, linked data, NLP, information extraction, knowledge representation and reasoning.




Representation Learning for Natural Language Processing


Book Description

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.




Knowledge Graphs and Semantic Web


Book Description

This book constitutes the thoroughly refereed proceedings of the Third Iberoamerican Conference, KGSWC 2021, held in Kingsville, Texas, USA, in November 2021.* The 22 full and 2 short papers presented were carefully reviewed and selected from 85 submissions. The papers cover topics related to software and its engineering, information systems, software creation and management, World Wide Web, web data description languages, and others. *Due to the Covid-19 pandemic the conference was held virtually.




Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding


Book Description

This book constitutes the refereed proceedings of the Third China Conference on Knowledge Graph and Semantic Computing, CCKS 2018, held in Tianjin, China, in August 2018. The 27 revised full papers and 2 revised short papers presented were carefully reviewed and selected from 101 submissions. The papers cover wide research fields including the knowledge graph, information extraction, knowledge representation and reasoning, linked data.