Multiphase Flow and Transport Processes in the Subsurface


Book Description

The general formulation of a model is an important precondition for modeling multiphase flow and transport processes in subsurface hydrosystems. This book presents a consistent and easily accessible formulation of the fundamental phenomena and concepts, a uniform description of mathematical and numerical modeling, and latest developments in the field of simulation of multiphase processes, especially in porous and heterogeneous media. The author discusses in detail not only general aspects of the selection of relevant processes and corresponding parameters but also the mathematical and numerical modeling concepts.




Proceedings of the 6th International Conference on Hydroinformatics


Book Description

Hydroinformatics addresses cross-disciplinary issues ranging from technological and sociological to more general environmental concerns, including an ethical perspective. It covers the application of information technology in the widest sense to problems of the aquatic environment.This two-volume publication contains about 250 high quality papers contributed by authors from over 50 countries. The proceedings present many exciting new findings in the emerging subjects, as well as their applications, such as: data mining, data assimilation, artificial neural networks, fuzzy logic, genetic algorithms and genetic programming, chaos theory and support vector machines, geographic information systems and virtual imaging, decision support and management systems, Internet-based technologies.This book provides an excellent reference to researchers, graduate students, practitioners, and all those interested in the field of hydroinformatics.




Multiphase Fluid Flow in Porous and Fractured Reservoirs


Book Description

Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website




Upscaling Multiphase Flow in Porous Media


Book Description

This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.




Multiphase Flow and Transport in the Subsurface


Book Description

(from the 1st edition) One important precondition for modeling multiphase flow and transport processes in the hydrosystem "subsurface" is the general formulation of a model. The objective of this book is to present a consistent, easily accessible formulation of the fundamental phenomena and concepts, to give a uniform description of mathematical and numerical modeling, and to show the latest developments in the field of simulation of multiphase processes, especially in porous and heterogeneous media. Some general aspects which affect the selection of the relevant processes and the corresponding parameters as well as the mathematical and numerical model concepts are discussed in detail.




FEFLOW


Book Description

FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).




Handbook of Geomathematics


Book Description

During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.




Hydroinformatics, Proceedings Of The 6th International Conference (In 2 Volumes, With Cd-rom)


Book Description

Hydroinformatics addresses cross-disciplinary issues ranging from technological and sociological to more general environmental concerns, including an ethical perspective. It covers the application of information technology in the widest sense to problems of the aquatic environment.This two-volume publication contains about 250 high quality papers contributed by authors from over 50 countries. The proceedings present many exciting new findings in the emerging subjects, as well as their applications, such as: data mining, data assimilation, artificial neural networks, fuzzy logic, genetic algorithms and genetic programming, chaos theory and support vector machines, geographic information systems and virtual imaging, decision support and management systems, Internet-based technologies.This book provides an excellent reference to researchers, graduate students, practitioners, and all those interested in the field of hydroinformatics.




Handbook of Environmental Fluid Dynamics, Two-Volume Set


Book Description

With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, this two-volume handbook presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the field, along with critical discussions of environmental sustainability related to engineering aspects. The first volume provides a comprehensive overview of the fundamentals, and the second volume explores the interactions between engineered structures and natural flows.




An Introduction to Reservoir Simulation Using MATLAB/GNU Octave


Book Description

Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.