Ionic Polymer Metal Composites (IMPCs)


Book Description

A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.




Ionic Polymer Metal Composites (IPMCs)


Book Description

Ionic polymer metal composites (IPMCs) can generate a voltage when physically deformed. Conversely, an applied small voltage or electrical field can induce an array of spectacular large deformation or actuation behaviours in IPMCs, such as bending, twisting, rolling, twirling, steering and undulating. An important smart material, IPMCs have applications in energy harvesting and as self-powered strain or deformation sensors, they are especially suitable for monitoring the shape of dynamic structures. Other uses include soft actuation applications and as a material for biomimetic robotic soft artificial muscles in industrial and medical contexts. This comprehensive volume on ionic polymer metal composites provides a broad coverage of the state of the art and recent advances in the field written by some of the world’s leading experts on various characterizations and modeling of IPMCs. Topics covered in this two volume set include uses in electrochemically active electrodes, electric energy storage devices, soft biomimetic robotics artificial muscles, multiphysics modeling of IPMCs, biomedical applications, IPMCs as dexterous manipulators and tactile sensors for minimally invasive robotic surgery, self-sensing, miniature pumps for drug delivery, IPMC snake-like robots, IPMC microgrippers for microorganisms manipulations, Graphene-based IPMCs and cellulose-based IPMCs or electroactive paper actuators (EAPap). Edited by the leading authority on IMPCs, the broad coverage will appeal to researchers from chemistry, materials, engineering, physics and medical communities interested in both the material and its applications.




Electroactive Polymers for Robotic Applications


Book Description

This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.




Ionic Polymer Metal Composites (IMPCs)


Book Description

A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.




The Mechanics and Thermodynamics of Continua


Book Description

The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.




Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems


Book Description

This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.




Soft Actuators


Book Description

This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.




Mobile Microrobotics


Book Description

The first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.