Multiple Comparisons, Selection and Applications in Biometry


Book Description

Aims to provide in-depth descriptions of the latest developments in multiple comparison methods and selection procedures, while emphasizing biometry. This text is published in honour of the 70th birthday of Charles W. Dunnett - a pioneer in statistical methodology.




Multiple Comparisons, Selection and Applications in Biometry


Book Description

Aims to provide in-depth descriptions of the latest developments in multiple comparison methods and selection procedures, while emphasizing biometry. This text is published in honour of the 70th birthday of Charles W. Dunnett - a pioneer in statistical methodology.




Multiple Comparisons


Book Description

Multiple Comparisons introduces simultaneous statistical inference and covers the theory and techniques for all-pairwise comparisons, multiple comparisons with the best, and multiple comparisons with a control. The author describes confidence intervals methods and stepwise exposes abuses and misconceptions, and guides readers to the correct method for each problem. Discussions also include the connections with bioequivalence, drug stability, and toxicity studies Real data sets analyzed by computer software packages illustrate the applications presented.




Handbook of Multiple Comparisons


Book Description

Written by experts that include originators of some key ideas, chapters in the Handbook of Multiple Testing cover multiple comparison problems big and small, with guidance toward error rate control and insights on how principles developed earlier can be applied to current and emerging problems. Some highlights of the coverages are as follows. Error rate control is useful for controlling the incorrect decision rate. Chapter 1 introduces Tukey's original multiple comparison error rates and point to how they have been applied and adapted to modern multiple comparison problems as discussed in the later chapters. Principles endure. While the closed testing principle is more familiar, Chapter 4 shows the partitioning principle can derive confidence sets for multiple tests, which may become important as the profession goes beyond making decisions based on p-values. Multiple comparisons of treatment efficacy often involve multiple doses and endpoints. Chapter 12 on multiple endpoints explains how different choices of endpoint types lead to different multiplicity adjustment strategies, while Chapter 11 on the MCP-Mod approach is particularly useful for dose-finding. To assess efficacy in clinical trials with multiple doses and multiple endpoints, the reader can see the traditional approach in Chapter 2, the Graphical approach in Chapter 5, and the multivariate approach in Chapter 3. Personalized/precision medicine based on targeted therapies, already a reality, naturally leads to analysis of efficacy in subgroups. Chapter 13 draws attention to subtle logical issues in inferences on subgroups and their mixtures, with a principled solution that resolves these issues. This chapter has implication toward meeting the ICHE9R1 Estimands requirement. Besides the mere multiple testing methodology itself, the handbook also covers related topics like the statistical task of model selection in Chapter 7 or the estimation of the proportion of true null hypotheses (or, in other words, the signal prevalence) in Chapter 8. It also contains decision-theoretic considerations regarding the admissibility of multiple tests in Chapter 6. The issue of selected inference is addressed in Chapter 9. Comparison of responses can involve millions of voxels in medical imaging or SNPs in genome-wide association studies (GWAS). Chapter 14 and Chapter 15 provide state of the art methods for large scale simultaneous inference in these settings.




Multiple Decision Procedures


Book Description

An encyclopaedic coverage of the literature in the area of ranking and selection procedures. It also deals with the estimation of unknown ordered parameters. This book can serve as a text for a graduate topics course in ranking and selection. It is also a valuable reference for researchers and practitioners.




Tables for the Use of Range and Studentized Range in Tests of Hypotheses


Book Description

A companion volume to the authors' previous well-received work, the CRC Handbook of Tables for the Use of Order Statistics in Estimation, this handbook discusses testing whether a hypothesis is true or false. Together, these volumes are your complete reference to theory and important tables relating to order statistics and their applications. Once a researcher completes an experiment, the resulting data is assumed to have come from a normal distribution with its mean and variance unknown. The researcher is then presented with a hypothesis testing problem. The use of order statistics and related functions offers a simple, powerful, and interesting approach to solving this problem. This volume presents an introduction to the use of order statistics and explains the various problems and their applications. The role of order statistics in solving these problems is examined, several important statistics are introduced, and their use in addressing testing of hypothesis problems is highlighted. The book also includes numerous tables that facilitate the methods of hypothesis testing using order statistics. Examples are given of the use of these tables in multiple comparison tests, with attention to error rates and sample sizes, and in the analog range of analysis of variance.







Multistage Selection and Ranking Procedures


Book Description

"This useful volume provides a thorough synthesis of second-order asymptotics in multistage sampling methodologies for selection and ranking unifying available second-order results in general and applying them to a host of situations Contains, in each chapter, helpful Notes and Overviews to facilitate comprehension, as well as Complements and Problems for more in-depth study of specific topics!"




Proceedings of the International Conference on Linear Statistical Inference LINSTAT ’93


Book Description

The International Conference on Linear Statistical Inference LINSTAT'93 was held in Poznan, Poland, from May 31 to June 4, 1993. The purpose of the confer ence was to enable scientists, from various countries, engaged in the diverse areas of statistical sciences and practice to meet together and exchange views and re sults related to the current research on linear statistical inference in its broadest sense. Thus, the conference programme included sessions on estimation, prediction and testing in linear models, on robustness of some relevant statistical methods, on estimation of variance components appearing in linear models, on certain gen eralizations to nonlinear models, on design and analysis of experiments, including optimality and comparison of linear experiments, and on some other topics related to linear statistical inference. Within the various sessions 22 invited papers and 37 contributed papers were presented, 12 of them as posters. The conference gathered 94 participants from eighteen countries of Europe, North America and Asia. There were 53 participants from abroad and 41 from Poland. The conference was the second of this type, devoted to linear statistical inference. The first was held in Poznan in June, 4-8, 1984. Both belong to the series of confer ences on mathematical statistics and probability theory organized under the auspices of the Committee of Mathematics of the Polish Academy of Sciences, due to the ini tiative and efforts of its Mathematical Statistics Section. In the years 1973-1993 there were held in Poland nineteen such conferences, some of them international.




Group Sequential Methods with Applications to Clinical Trials


Book Description

Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion. Group Sequential Methods with Applications to Clinical Trials describes group sequential stopping rules designed to reduce average study length and control Type I and II error probabilities. The authors present one-sided and two-sided tests, introduce several families of group sequential tests, and explain how to choose the most appropriate test and interim analysis schedule. Their topics include placebo-controlled randomized trials, bio-equivalence testing, crossover and longitudinal studies, and linear and generalized linear models. Research in group sequential analysis has progressed rapidly over the past 20 years. Group Sequential Methods with Applications to Clinical Trials surveys and extends current methods for planning and conducting interim analyses. It provides straightforward descriptions of group sequential hypothesis tests in a form suited for direct application to a wide variety of clinical trials. Medical statisticians engaged in any investigations planned with interim analyses will find this book a useful and important tool.