Multiple Perspectives on Artificial Intelligence in Healthcare


Book Description

This book offers a comprehensive yet concise overview of the challenges and opportunities presented by the use of artificial intelligence in healthcare. It does so by approaching the topic from multiple perspectives, e.g. the nursing, consumer, medical practitioner, healthcare manager, and data analyst perspective. It covers human factors research, discusses patient safety issues, and addresses ethical challenges, as well as important policy issues. By reporting on cutting-edge research and hands-on experience, the book offers an insightful reference guide for health information technology professionals, healthcare managers, healthcare practitioners, and patients alike, aiding them in their decision-making processes. It will also benefit students and researchers whose work involves artificial intelligence-related research issues in healthcare.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Artificial Intelligence in Medicine


Book Description

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.




International Perspectives on Artificial Intelligence


Book Description

Artificial Intelligence, or AI, is set to redefine our day-to-day activities. Many companies across the globe are engaged in doing research on the application of AI in almost each and every aspect of our life. Many companies have already integrated AI in their manufacturing, supply chain, marketing and after sales operations, but there is a lot that needs to be done to capitalize the full potential of this technology. International Perspectives on Artificial Intelligence is an attempt to put together the work done across various countries on adapting and integrating Ai not only in organizations but also at individual and social levels.




Precision Medicine and Artificial Intelligence


Book Description

Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine




Future of Health Technology


Book Description

This text provides a comprehensive vision of the future of health technology by looking at the ways to advance medical technologies, health information infrastructure and intellectual leadership. It also explores technology creations, adoption processes and the impact of evolving technologies.




Artificial Intelligence for COVID-19


Book Description

This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.




Artificial Intelligence in Medical Imaging


Book Description

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.




Accelerated Path to Cures


Book Description

Accelerated Path to Cures provides a transformative perspective on the power of combining advanced computational technologies, modeling, bioinformatics and machine learning approaches with nonclinical and clinical experimentation to accelerate drug development. This book discusses the application of advanced modeling technologies, from target identification and validation to nonclinical studies in animals to Phase 1-3 human clinical trials and post-approval monitoring, as alternative models of drug development. As a case of successful integration of computational modeling and drug development, we discuss the development of oral small molecule therapeutics for inflammatory bowel disease, from the application of docking studies to screening new chemical entities to the development of next-generation in silico human clinical trials from large-scale clinical data. Additionally, this book illustrates how modeling techniques, machine learning, and informatics can be utilized effectively at each stage of drug development to advance the progress towards predictive, preventive, personalized, precision medicine, and thus provide a successful framework for Path to Cures.




Artificial Intelligence and the Future of Healthcare


Book Description

The application of Artificial Intelligence (AI) in the healthcare sector is certain to boost levels of automation and productivity but, paradoxically, it will also increase the availability of “first line competence.” At the same time as demographic trends are affecting demand for health and social care, the technological developments we are seeing make it highly likely that AI will play a decisive role in tackling the challenges our healthcare systems will encounter. This book reveals systemic connections to tackle questions about the potential impact of AI on future challenges in the healthcare sector. Specifically, it develops practical proposals for ways in which AI can be applied to solve these forthcoming issues. It emphasizes the importance of AI in what is known in the literature as human augmentation. The book’s innovative perspective is apparent in the way it challenges conventional wisdom in the context of several pressing questions, such as: • What opportunities and challenges could arise from the application of AI in the healthcare sector? • How can the philosophy of medicine, viewed from a systemic perspective, help us to understand, explain, and resolve some of the future challenges in the healthcare sector? • How could AI affect inclusive employment opportunities for people with disabilities? The book also contains an underlying argument to the effect that the rational approach adopted by economists is perhaps less rational when applied to a healthcare sector that is crying out for more “first line competence.” The primary readership will be academic, but the book will also appeal to policymakers, consultants, HR departments, healthcare stakeholders, and related practitioners.