Multiplicative Differential Geometry


Book Description

This book introduces multiplicative Frenet curves. We define multiplicative tangent, multiplicative normal, and multiplicative normal plane for a multiplicative Frenet curve. We investigate the local behaviours of a multiplicative parameterized curve around multiplicative biregular points, define multiplicative Bertrand curves and investigate some of their properties. A multiplicative rigid motion is introduced. The book is addressed to instructors and graduate students, and also specialists in geometry, mathematical physics, differential equations, engineering, and specialists in applied sciences. The book is suitable as a textbook for graduate and under-graduate level courses in geometry and analysis. Many examples and problems are included. The author introduces the main conceptions for multiplicative surfaces: multiplicative first fundamental form, the main multiplicative rules for differentiations on multiplicative surfaces, and the main multiplicative regularity conditions for multiplicative surfaces. An investigation of the main classes of multiplicative surfaces and second fundamental forms for multiplicative surfaces is also employed. Multiplicative differential forms and their properties, multiplicative manifolds, multiplicative Einstein manifolds and their properties, are investigated as well. Many unique applications in mathematical physics, classical geometry, economic theory, and theory of time scale calculus are offered.




Introduction to Differential Geometry


Book Description

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.




Basic Concepts of Synthetic Differential Geometry


Book Description

Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.




Multiplicative Analytic Geometry


Book Description

This book is devoted to multiplicative analytic geometry. The book reflects recent investigations into the topic. The reader can use the main formulae for investigations of multiplicative differential equations, multiplicative integral equations and multiplicative geometry. The authors summarize the most recent contributions in this area. The goal of the authors is to bring the most recent research on the topic to capable senior undergraduate students, beginning graduate students of engineering and science and researchers in a form to advance further study. The book contains eight chapters. The chapters in the book are pedagogically organized. Each chapter concludes with a section with practical problems. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. In the period from 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance. Multiplicative Analytic Geometry builds upon multiplicative calculus and advances the theory to the topics of analytic and differential geometry.




An Introduction to Differential Geometry


Book Description

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.




Global Differential Geometry


Book Description

This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.




An Introduction to Manifolds


Book Description

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.




First Steps in Differential Geometry


Book Description

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.




Differential Geometry


Book Description

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.




Discrete Differential Geometry


Book Description

An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.