Multiscale Processes in the Earth's Magnetosphere: From Interball to Cluster


Book Description

The past forty years of space research have seen a substantial improvement in our understanding of the Earth’s magnetosphere and its coupling with the solar wind and interplanetary magnetic ?eld (IMF). The magnetospheric str- ture has been mapped and major processes determining this structure have been de?ned. However, the picture obtained is too often static. We know how the magnetosphere forms via the interaction of the solar wind and IMF with the Earth’s magnetic ?eld. We can describe the steady state for various upstream conditions but do not really understand the dynamic processes leading from one state to another. The main dif?culty is that the magnetosphere is a comp- cated system with many time constants ranging from fractions of a second to days and the system rarely attains a steady state. Two decades ago, it became clear that further progress would require multi-point measurements. Since then, two multi-spacecraft missions have been launched — INTERBALL in 1995/96 and CLUSTER II in 2000. The objectives of these missions d- fered but were complementary: While CLUSTER is adapted to meso-scale processes, INTERBALL observed larger spatial and temporal scales. However, the number of papers taking advantage of both missions simul- neously is rather small.




Auroral Phenomenology and Magnetospheric Processes


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 197. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the different planets, there are also striking differences that test our basic understanding of auroral processes. The objective, upon which this monograph is focused, is to connect our knowledge of auroral morphology to the physical processes in the magnetosphere that power and structure discrete and diffuse auroras. Understanding this connection will result in a more complete explanation of the aurora and also further the goal of being able to interpret the global auroral distributions as a dynamic map of the magnetosphere. The volume synthesizes five major areas: auroral phenomenology, aurora and ionospheric electrodynamics, discrete auroral acceleration, aurora and magnetospheric dynamics, and comparative planetary aurora. Covering the recent advances in observations, simulation, and theory, this book will serve a broad community of scientists, including graduate students, studying auroras at Mars, Earth, Saturn, and Jupiter. Projected beyond our solar system, it may also be of interest for astronomers who are looking for aurora-active exoplanets.




Multiscale Processes in the Earth's Magnetosphere: From Interball to Cluster


Book Description

The past forty years of space research have seen a substantial improvement in our understanding of the Earth’s magnetosphere and its coupling with the solar wind and interplanetary magnetic ?eld (IMF). The magnetospheric str- ture has been mapped and major processes determining this structure have been de?ned. However, the picture obtained is too often static. We know how the magnetosphere forms via the interaction of the solar wind and IMF with the Earth’s magnetic ?eld. We can describe the steady state for various upstream conditions but do not really understand the dynamic processes leading from one state to another. The main dif?culty is that the magnetosphere is a comp- cated system with many time constants ranging from fractions of a second to days and the system rarely attains a steady state. Two decades ago, it became clear that further progress would require multi-point measurements. Since then, two multi-spacecraft missions have been launched — INTERBALL in 1995/96 and CLUSTER II in 2000. The objectives of these missions d- fered but were complementary: While CLUSTER is adapted to meso-scale processes, INTERBALL observed larger spatial and temporal scales. However, the number of papers taking advantage of both missions simul- neously is rather small.




Magnetosphere-Ionosphere Coupling in the Solar System


Book Description

Over a half century of exploration of the Earth’s space environment, it has become evident that the interaction between the ionosphere and the magnetosphere plays a dominant role in the evolution and dynamics of magnetospheric plasmas and fields. Interestingly, it was recently discovered that this same interaction is of fundamental importance at other planets and moons throughout the solar system. Based on papers presented at an interdisciplinary AGU Chapman Conference at Yosemite National Park in February 2014, this volume provides an intellectual and visual journey through our exploration and discovery of the paradigm-changing role that the ionosphere plays in determining the filling and dynamics of Earth and planetary environments. The 2014 Chapman conference marks the 40th anniversary of the initial magnetosphere-ionosphere coupling conference at Yosemite in 1974, and thus gives a four decade perspective of the progress of space science research in understanding these fundamental coupling processes. Digital video links to an online archive containing both the 1974 and 2014 meetings are presented throughout this volume for use as an historical resource by the international heliophysics and planetary science communities. Topics covered in this volume include: Ionosphere as a source of magnetospheric plasma Effects of the low energy ionospheric plasma on the stability and creation of the more energetic plasmas The unified global modeling of the ionosphere and magnetosphere at the Earth and other planets New knowledge of these coupled interactions for heliophysicists and planetary scientists, with a cross-disciplinary approach involving advanced measurement and modeling techniques Magnetosphere-Ionosphere Coupling in the Solar System is a valuable resource for researchers in the fields of space and planetary science, atmospheric science, space physics, astronomy, and geophysics. Read an interview with the editors to find out more: https://eos.org/editors-vox/filling-earths-space-environment-from-the-sun-or-the-earth




The Cluster Active Archive


Book Description

Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.




Dawn-Dusk Asymmetries in Planetary Plasma Environments


Book Description

Dawn­Dusk Asymmetries in Planetary Plasma Environments Dawn-dusk asymmetries are ubiquitous features of the plasma environment of many of the planets in our solar system. They occur when a particular process or feature is more pronounced at one side of a planet than the other. For example, recent observations indicate that Earth's magnetopause is thicker at dawn than at dusk. Likewise, auroral breakups at Earth are more likely to occur in the pre-midnight than post-midnight sectors. Increasing availability of remotely sensed and in situ measurements of planetary ionospheres, magnetospheres and their interfaces to the solar wind have revealed significant and persistent dawn-dusk asymmetries. As yet there is no consensus regarding the source of many of these asymmetries, nor the physical mechanisms by which they are produced and maintained. Volume highlights include: A comprehensive and updated overview of current knowledge about dawn-dusk asymmetries in the plasma environments of planets in our solar system and the mechanisms behind them Valuable contributions from internationally recognized experts, covering both observations, simulations and theories discussing all important aspects of dawn-dusk asymmetries Space weather effects are caused by processes in space, mainly the magnetotail, and can be highly localized on ground. Knowing where the source, i.e., where dawn-dusk location is will allow for a better prediction of where the effects on ground will be most pronounced Covering both observational and theoretical aspects of dawn dusk asymmetries, Dawn­-Dusk Asymmetries in Planetary Plasma Environments will be a valuable resource for academic researchers in space physics, planetary science, astrophysics, physics, geophysics and earth science.




Annales Geophysicae


Book Description







Earth's Magnetosphere


Book Description

The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction. Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer More than 200 figures illustrate the text Includes a color insert