Multivariate Statistical Process Control with Industrial Applications


Book Description

Detailed coverage of the practical aspects of multivariate statistical process control (MVSPC) based on the application of Hotelling's T2 statistic. MVSPC is the application of multivariate statistical techniques to improve the quality and productivity of an industrial process. Provides valuable insight into the T2 statistic.




Multivariate Statistical Process Control


Book Description

Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas. Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be interested in this book. It can also be used to provide supplementary material and industrial insight for graduate and advanced undergraduate students, and graduate engineers. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.




Multivariate Quality Control


Book Description

Provides a theoretical foundation as well as practical tools for the analysis of multivariate data, using case studies and MINITAB computer macros to illustrate basic and advanced quality control methods. This work offers an approach to quality control that relies on statistical tolerance regions, and discusses computer graphic analysis highlightin




Multivariate Statistical Quality Control Using R


Book Description

​​​​​The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.




Multivariate Analysis in the Pharmaceutical Industry


Book Description

Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come




Introduction to Statistical Process Control


Book Description

A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon




Multivariate Statistical Methods in Quality Management


Book Description

Multivariate statistical methods are an essential component of quality engineering data analysis. This monograph provides a solid background in multivariate statistical fundamentals and details key multivariate statistical methods, including simple multivariate data graphical display and multivariate data stratification. * Graphical multivariate data display * Multivariate regression and path analysis * Multivariate process control charts * Six sigma and multivariate statistical methods




Introduction to Statistical Process Control


Book Description

An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: ● An introduction to the basics as well as a background of control charts ● Widely used and newly researched attributes of control charts, including guidelines for implementation ● The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states ● An overview of attribute control charts based on memory statistics ● The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.




Handbook of Multivariate Process Capability Indices


Book Description

Providing a single-valued assessment of the performance of a process is often one of the greatest challenges for a quality professional. Process Capability Indices (PCIs) precisely do this job. For processes having a single measurable quality characteristic, there is an ample number of PCIs, defined in literature. The situation worsens for multivariate processes, i.e., where there is more than one correlated quality characteristic. Since in most situations quality professionals face multiple quality characteristics to be controlled through a process, Multivariate Process Capability Indices (MPCIs) become the order of the day. However, there is no book which addresses and explains different MPCIs and their properties. The literature of Multivariate Process Capability Indices (MPCIs) is not well organized, in the sense that a thorough and systematic discussion on the various MPCIs is hardly available in the literature. Handbook of Multivariate Process Capability Indices provides an extensive study of the MPCIs defined for various types of specification regions. This book is intended to help quality professionals to understand which MPCI should be used and in what situation. For researchers in this field, the book provides a thorough discussion about each of the MPCIs developed to date, along with their statistical and analytical properties. Also, real life examples are provided for almost all the MPCIs discussed in the book. This helps both the researchers and the quality professionals alike to have a better understanding of the MPCIs, which otherwise become difficult to understand, since there is more than one quality characteristic to be controlled at a time. Features: A complete guide for quality professionals on the usage of different MPCIs. A step by step discussion on multivariate process capability analysis, starting from a brief discussion on univariate indices. A single source for all kinds of MPCIs developed so far. Comprehensive analysis of the MPCIs, including analysis of real-life data. References provided at the end of each chapter encompass the entire literature available on the respective topic. Interpretation of the MPCIs and development of threshold values of many MPCIs are also included. This reference book is aimed at the post graduate students in Industrial Statistics. It will also serve researchers working in the field of Industrial Statistics, as well as practitioners requiring thorough guidance regarding selection of an appropriate MPCI suitable for the problem at hand.




Data Depth


Book Description

The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many of the articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with the Association for Computer Machinery (ACM).