Murine Homeobox Gene Control of Embryonic Patterning and Organogenesis


Book Description

The first homeobox gene was molecular cloned nearly two decades ago, and since that time tremendous progress has been made in our understanding of the distribution of homeobox genes in the genomes of many animal species and the common functional role the encoded homeodomains play in cell-type specification, morphogenesis and development.The amino acid sequence of the homeodomain, as well as the presence of other conserved protein domains, has allowed the classification of homeodomain-containing proteins (homeoproteins) into over thirty separate families (e.g. Hox, Dlx, Msx, Otx, Hmx, Cdx etc.). In many cases a single gene has been shown to fully direct the morphogenesis and development of a complex tissue, organ or even an entire body segment. Yet how this "master" regulatory ability of homeoproteins functions at the molecular level to a large degree still remains a mystery, in part owing to our limited understanding of the nature of both homeoprotein transcriptional cofactors and even more elusively, the downstream targets of homeoprotein function. In the reviews presented here it is limited primarily to what has been learned in vertebrate systems, principally focusing on the mouse, owing to the strengths of the technical approaches currently existing in murine developmental genetics that are not yet available to the same degree in other vertebrate species. Despite this mammalian predilection, a common thread to each of these reviews is the underlying importance of what has been learned about homeoprotein function in other animal species, particularly arthropods like Drosophila.




Transcriptional Control of Neural Crest Development


Book Description

The neural crest is a remarkable embryonic population of cells found only in vertebrates and has the potential to give rise to many different cell types contributing throughout the body. These derivatives range from the mesenchymal bone and cartilage comprising the facial skeleton, to neuronal derivatives of the peripheral sensory and autonomic nervous systems, to melanocytes throughout the body, and to smooth muscle of the great arteries of the heart. For these cells to correctly progress from an unspecifi ed, nonmigratory population to a wide array of dynamic, differentiated cell types-some of which retain stem cell characteristics presumably to replenish these derivatives-requires a complex network of molecular switches to control the gene programs giving these cells their defi ning structural, enzymatic, migratory, and signaling capacities. This review will bring together current knowledge of neural crest-specifi c transcription factors governing these progressions throughout the course of development. A more thorough understanding of the mechanisms of transcriptional control in differentiation will aid in strategies designed to push undifferentiated cells toward a particular lineage, and unraveling these processes will help toward reprogramming cells from a differentiated to a more naive state. Table of Contents: Introduction / AP Genes / bHLH Genes / ETS Genes / Fox Genes / Homeobox Genes / Hox Genes / Lim Genes / Pax Genes / POU Domain Genes / RAR/RXR Genes / Smad Genes / Sox Genes / Zinc Finger Genes / Other Miscellaneous Genes / References / Author Biographies




Advances in Developmental Biology


Book Description

Volume 4 of Advances in Developmental Biology and Biochemistry consists of five chapters that review specific aspects of fly and mammalian development. In Chapter 1, Y. Mishina and R. Behringer discuss various aspects of Müllerian-inhibiting substance (MIS) in mammals, from a brief history of its discovery to recent studies of the MIS gene in transgenic and knock-out animals. In Chapter 2, C. Rushlow and S. Roth discuss the role of the dpp-group genes in dorsoventral patterning of the Drosophila embryo. In Chapter 3, M. Yip and H. Lipshitz discuss the terminal (asegmental termini) gene hierarchy of Drosophila and the genetic control of tissue specification and morphogenesis. In Chapter 4, R. Bachvarova discusses induction of mesoderm and the origin of anterior-posterior polarity in the mouse embryo, using the frog embryo as a paradigm. In Chapter 5, P. Vogt discusses human Y chromosome function in male germ cell development.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Maternal Control of Development in Vertebrates


Book Description

Eggs of all animals contain mRNAs and proteins that are supplied to or deposited in the egg as it develops during oogenesis. These maternal gene products regulate all aspects of oocyte development, and an embryo fully relies on these maternal gene products for all aspects of its early development, including fertilization, transitions between meiotic and mitotic cell cycles, and activation of its own genome. Given the diverse processes required to produce a developmentally competent egg and embryo, it is not surprising that maternal gene products are not only essential for normal embryonic development but also for fertility. This review provides an overview of fundamental aspects of oocyte and early embryonic development and the interference and genetic approaches that have provided access to maternally regulated aspects of vertebrate development. Some of the pathways and molecules highlighted in this review, in particular, Bmps, Wnts, small GTPases, cytoskeletal components, and cell cycle regulators, are well known and are essential regulators of multiple aspects of animal development, including oogenesis, early embryogenesis, organogenesis, and reproductive fitness of the adult animal. Specific examples of developmental processes under maternal control and the essential proteins will be explored in each chapter, and where known conserved aspects or divergent roles for these maternal regulators of early vertebrate development will be discussed throughout this review. Table of Contents: Introduction / Oogenesis: From Germline Stem Cells to Germline Cysts / Oocyte Polarity and the Embryonic Axes: The Balbiani Body, an Ancient Oocyte Asymmetry / Preparing Developmentally Competent Eggs / Egg Activation / Blocking Polyspermy / Cleavage/ Mitosis: Going Multicellular / Maternal-Zygotic Transition / Reprogramming: Epigenetic Modifications and Zygotic Genome Activation / Dorsal-Ventral Axis Formation before Zygotic Genome Activation in Zebrafish and Frogs / Maternal TGF-β and the Dorsal-Ventral Embryonic Axis / Maternal Control After Zygotic Genome Activation / Compensation by Stable Maternal Proteins / Maternal Contributions to Germline Establishment or Maintenance / Perspective / Acknowledgments / References




Advances in Developmental Biochemistry


Book Description

Volume 3 of Advances in Developmental Biology and Biochemistry consists of five chapters that review specific aspects of mammalian and fly development. In Chapter 1, D. Chapman and D. Wolgemuth discuss the role of protein kinases, especially tyrosine-and serine/threonine kinases, in regulating cell cycle events during mammalian gametogenesis. IN Chapter 2, M. Lundell and J. Hirsh discuss the regulation of the DOPA decarboxylase gene during Drosophila development. DO PA decarboxylase is a key enzyme in biogenic amine biosynthesis and its expression is subject to both transcriptional and post-transcriptional regulation. In Chapter 3, S. Potter discusses the role of homeobox genes as master switches determining the developmental destinies of groups of cells during murine development. In Chapter 4, G. Cooper discusses the expression and function of the c-mos proto-oncogene in mammalian germ cells where it plays a central role in regulating the meiotic cell cycle. In Chapter 5, F. Beermann, R. Ganß, and G. Schütz discuss the regulation of pigmentation during mammalian development, with emphasis on the production of melanin in mouse melanocytes.




Organogenesis of the Kidney


Book Description

Although this description of a model system for cell differentation and organogenesis emphasizes the mammalian kidney, detailed coverage is also given to the development of the transient excretory organs.




Muscle Development in Drosophilia


Book Description

The different aspects of muscle development are considered from cellular, molecular and genetic viewpoints, and the text is supported by black/white and color illustrations. The book will appeal to those studying muscle development and muscle biology in any organism.




Fetal and Neonatal Lung Development


Book Description

Lung disease affects more than 600 million people worldwide. While some of these lung diseases have an obvious developmental component, there is growing appreciation that processes and pathways critical for normal lung development are also important for postnatal tissue homeostasis and are dysregulated in lung disease. This book provides an authoritative review of fetal and neonatal lung development and is designed to provide a diverse group of scientists, spanning the basic to clinical research spectrum, with the latest developments on the cellular and molecular mechanisms of normal lung development and injury-repair processes, and how they are dysregulated in disease. The book covers genetics, omics, and systems biology as well as new imaging techniques that are transforming studies of lung development. The reader will learn where the field of lung development has been, where it is presently, and where it is going in order to improve outcomes for patients with common and rare lung diseases.




Pediatric Nephrology


Book Description

Here is an extensive update of Pediatric Nephrology, which has become the standard reference text in the field. It is global in perspective and reflects the international group of editors, who are well-recognized experts in pediatric nephrology. Within this text, the development of kidney structure and function is followed by detailed and comprehensive chapters on all childhood kidney diseases.