Music, Science, and the Rhythmic Brain


Book Description

This book studies the effects of repetitive musical rhythm on the brain and nervous system, and in doing so integrates diverse fields including ethnomusicology, psychology, neuroscience, anthropology, religious studies, music therapy, and human health. It presents aspects of musical rhythm and biological rhythms, and in particular rhythmic entrainment, in a way that considers cultural context alongside theoretical research and discussions of potential clinical and therapeutic implications. Considering the effects of drumming and other rhythmic music on mental and bodily functioning, the volume hypothesizes that rhythmic music can have a dramatic impact on mental states, sometimes catalyzing profound changes in arousal, mood, and emotional states via the stimulation of changes in physiological functions like the electrical activity in the brain. The experiments presented here make use of electroencephalography (EEG), galvanic skin response (GSR), and subjective measures to gain insight into how these mental states are evoked, what their relationship is to the music and context of the experience, and demonstrate that they are happening in a consistent and reproducible fashion, suggesting clinical applications. This comprehensive volume will appeal to scholars in cognition, ethnomusicology, and music perception who are interested in the therapeutic potential of music.




Music, Science, and the Rhythmic Brain


Book Description

This book studies the effects of repetitive musical rhythm on the brain and nervous system, and in doing so integrates diverse fields including ethnomusicology, psychology, neuroscience, anthropology, religious studies, music therapy, and human health. It presents aspects of musical rhythm and biological rhythms, and in particular rhythmic entrainment, in a way that considers cultural context alongside theoretical research and discussions of potential clinical and therapeutic implications. Considering the effects of drumming and other rhythmic music on mental and bodily functioning, the volume hypothesizes that rhythmic music can have a dramatic impact on mental states, sometimes catalyzing profound changes in arousal, mood, and emotional states via the stimulation of changes in physiological functions like the electrical activity in the brain. The experiments presented here make use of electroencephalography (EEG), galvanic skin response (GSR), and subjective measures to gain insight into how these mental states are evoked, what their relationship is to the music and context of the experience, and demonstrate that they are happening in a consistent and reproducible fashion, suggesting clinical applications. This comprehensive volume will appeal to scholars in cognition, ethnomusicology, and music perception who are interested in the therapeutic potential of music.




Rhythm, Music, and the Brain


Book Description

With the advent of modern cognitive neuroscience and new tools of studying the human brain "live," music as a highly complex, temporally ordered and rule-based sensory language quickly became a fascinating topic of study. The question of "how" music moves us, stimulates our thoughts, feelings, and kinesthetic sense, and how it can reach the human experience in profound ways is now measured with the advent of modern cognitive neuroscience. The goal of Rhythm, Music and the Brain is an attempt to bring the knowledge of the arts and the sciences and review our current state of study about the brain and music, specifically rhythm. The author provides a thorough examination of the current state of research, including the biomedical applications of neurological music therapy in sensorimotor speech and cognitive rehabilitation. This book will be of interest for the lay and professional reader in the sciences and arts as well as the professionals in the fields of neuroscientific research, medicine, and rehabilitation.




This is Your Brain on Music


Book Description

From the author of The Changing Mind and The Organized Mind comes a New York Times bestseller that unravels the mystery of our perennial love affair with music ***** 'What do the music of Bach, Depeche Mode and John Cage fundamentally have in common?' Music is an obsession at the heart of human nature, even more fundamental to our species than language. From Mozart to the Beatles, neuroscientist, psychologist and internationally-bestselling author Daniel Levitin reveals the role of music in human evolution, shows how our musical preferences begin to form even before we are born and explains why music can offer such an emotional experience. In This Is Your Brain On Music Levitin offers nothing less than a new way to understand music, and what it can teach us about ourselves. ***** 'Music seems to have an almost wilful, evasive quality, defying simple explanation, so that the more we find out, the more there is to know . . . Daniel Levitin's book is an eloquent and poetic exploration of this paradox' Sting 'You'll never hear music in the same way again' Classic FM magazine 'Music, Levitin argues, is not a decadent modern diversion but something of fundamental importance to the history of human development' Literary Review




Music, Language, and the Brain


Book Description

In the first comprehensive study of the relationship between music and language from the standpoint of cognitive neuroscience, Aniruddh D. Patel challenges the widespread belief that music and language are processed independently. Since Plato's time, the relationship between music and language has attracted interest and debate from a wide range of thinkers. Recently, scientific research on this topic has been growing rapidly, as scholars from diverse disciplines, including linguistics, cognitive science, music cognition, and neuroscience are drawn to the music-language interface as one way to explore the extent to which different mental abilities are processed by separate brain mechanisms. Accordingly, the relevant data and theories have been spread across a range of disciplines. This volume provides the first synthesis, arguing that music and language share deep and critical connections, and that comparative research provides a powerful way to study the cognitive and neural mechanisms underlying these uniquely human abilities. Winner of the 2008 ASCAP Deems Taylor Award.




Music, Science, and the Rhythmic Brain


Book Description

This book studies the effects of repetitive musical rhythm on the brain and nervous system, and in doing so integrates diverse fields including ethnomusicology, psychology, neuroscience, anthropology, religious studies, music therapy, and human health. It presents aspects of musical rhythm and biological rhythms, and in particular rhythmic entrainment, in a way that considers cultural context alongside theoretical research and discussions of potential clinical and therapeutic implications. Considering the effects of drumming and other rhythmic music on mental and bodily functioning, the volume hypothesizes that rhythmic music can have a dramatic impact on mental states, sometimes catalyzing profound changes in arousal, mood, and emotional states via the stimulation of changes in physiological functions like the electrical activity in the brain. The experiments presented here make use of electroencephalography (EEG), galvanic skin response (GSR), and subjective measures to gain insight into how these mental states are evoked, what their relationship is to the music and context of the experience, and demonstrate that they are happening in a consistent and reproducible fashion, suggesting clinical applications. This comprehensive volume will appeal to scholars in cognition, ethnomusicology, and music perception who are interested in the therapeutic potential of music.




The Cambridge Companion to Rhythm


Book Description

An exploration of rhythm and the richness of musical time from the perspective of performers, composers, analysts, and listeners.




Rhythms of the Brain


Book Description

Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.




The Evolution of Rhythm Cognition: Timing in Music and Speech


Book Description

Human speech and music share a number of similarities and differences. One of the closest similarities is their temporal nature as both (i) develop over time, (ii) form sequences of temporal intervals, possibly differing in duration and acoustical marking by different spectral properties, which are perceived as a rhythm, and (iii) generate metrical expectations. Human brains are particularly efficient in perceiving, producing, and processing fine rhythmic information in music and speech. However a number of critical questions remain to be answered: Where does this human sensitivity for rhythm arise? How did rhythm cognition develop in human evolution? How did environmental rhythms affect the evolution of brain rhythms? Which rhythm-specific neural circuits are shared between speech and music, or even with other domains? Evolutionary processes’ long time scales often prevent direct observation: understanding the psychology of rhythm and its evolution requires a close-fitting integration of different perspectives. First, empirical observations of music and speech in the field are contrasted and generate testable hypotheses. Experiments exploring linguistic and musical rhythm are performed across sensory modalities, ages, and animal species to address questions about domain-specificity, development, and an evolutionary path of rhythm. Finally, experimental insights are integrated via synthetic modeling, generating testable predictions about brain oscillations underlying rhythm cognition and its evolution. Our understanding of the cognitive, neurobiological, and evolutionary bases of rhythm is rapidly increasing. However, researchers in different fields often work on parallel, potentially converging strands with little mutual awareness. This research topic builds a bridge across several disciplines, focusing on the cognitive neuroscience of rhythm as an evolutionary process. It includes contributions encompassing, although not limited to: (1) developmental and comparative studies of rhythm (e.g. critical acquisition periods, innateness); (2) evidence of rhythmic behavior in other species, both spontaneous and in controlled experiments; (3) comparisons of rhythm processing in music and speech (e.g. behavioral experiments, systems neuroscience perspectives on music-speech networks); (4) evidence on rhythm processing across modalities and domains; (5) studies on rhythm in interaction and context (social, affective, etc.); (6) mathematical and computational (e.g. connectionist, symbolic) models of “rhythmicity” as an evolved behavior.




Rhythm and Transforms


Book Description

Rhythm and Transforms is a book that explores rhythm in music, its structure and how we perceive it. The book will be bought by engineers interested in acoustic signal processing as well as musicians, composers and computer scientists. Anyone interested in the scientific basis of music from psychologists to the designers of electronic musical instruments will be interested in this book.