The Essential Guide to N-of-1 Trials in Health


Book Description

N-of-1 trials, a type of individualized randomized controlled trial, are relevant to almost every discipline in medicine and psychology. They can tell the clinician with precision whether a treatment works in that individual, which distinguishes from the information available from most other trial designs. They have the potential to revolutionize the way clinical medicine is practiced. Whether you are a busy clinician, a researcher or a student, this book provides everything you need to know about N-of-1 trials. Written and edited by some of the world’s leading experts on N-of-1 trials, the book presents state of the art knowledge about N-of-1 trials, with chapters on ethics, statistics, health economics, design, analysis and reporting, and more. Full of examples and well illustrated, it is a comprehensive compendium of issues surrounding the design, conduct, interpretation and implementation of N-of-1 trials in a health system.




N of 1


Book Description

Twenty-five years ago my doctors had no cure for my cancer. So I went on a quest to find my own treatment. This is my story... Glenn Sabin was diagnosed with "incurable" leukemia (CLL). He embarked on a journey researching lifestyle changes, and conducted a personal experiment, chronicled through Harvard, now part of the medical literature.




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.




Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide


Book Description

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)




Analysis of Data from Randomized Controlled Trials


Book Description

This book provides a practical guide to the analysis of data from randomized controlled trials (RCT). It gives an answer to the question of how to estimate the intervention effect in an appropriate way. This problem is examined for different RCT designs, such as RCTs with one follow-up measurement, RCTs with more than one follow-up measurement, cluster RCTs, cross-over trials, stepped wedge trials, and N-of-1 trials. The statistical methods are explained in a non-mathematical way and are illustrated by extensive examples. All datasets used in the book are available for download, so readers can reanalyse the examples to gain a better understanding of the methods used. Although most examples are taken from epidemiological and clinical studies, this book is also highly recommended for researchers working in other fields.




Statistical Issues in Drug Development


Book Description

Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.




Sharing Clinical Trial Data


Book Description

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.




Single-Case Experimental Designs for Clinical Research and Neurorehabilitation Settings


Book Description

This book is a practical resource designed for clinicians, researchers, and advanced students who wish to learn about single-case research designs. It covers the theoretical and methodological underpinnings of single-case designs, as well as their practical application in the clinical and research neurorehabilitation setting. The book briefly traces the history of single-case experimental designs (SCEDs); outlines important considerations in understanding and planning a scientifically rigorous single-case study, including internal and external validity; describes prototypical single-case designs (withdrawal-reversal designs and the medical N-of-1 trial, multiple-baseline designs, alternating-treatments designs, and changing-criterion designs) and required features to meet evidence standards, threats to internal validity, and strategies to address them; addresses data evaluation, covering visual analysis of graphed data, statistical techniques, and clinical significance; and provides a practical ten-step procedure for implementing single-case methods. Each chapter includes detailed illustrative examples from the neurorehabilitation literature. Novel features include: A focus on the neurorehabilitation setting, which is particularly suitable for single-case designs because of the complex and often unique presentation of many patients/clients. A practical approach to the planning, implementation, data analysis, and reporting of single-case designs. An appendix providing a detailed summary of many recently published SCEDs in representative domains in the neurorehabilitation field, covering basic and instrumental activities of daily living, challenging behaviours, disorders of communication and cognition, mood and emotional functions, and motor-sensory disabilities. It is valuable reading for clinicians and researchers in several disciplines working in rehabilitation, including clinical and neuropsychology, education, language and speech pathology, occupational therapy, and physical therapy. It is also an essential resource for advanced students in these fields who need a textbook for specialised courses on research methodology and use of single-case design in applied clinical and research settings.




To Err Is Human


Book Description

Experts estimate that as many as 98,000 people die in any given year from medical errors that occur in hospitals. That's more than die from motor vehicle accidents, breast cancer, or AIDSâ€"three causes that receive far more public attention. Indeed, more people die annually from medication errors than from workplace injuries. Add the financial cost to the human tragedy, and medical error easily rises to the top ranks of urgent, widespread public problems. To Err Is Human breaks the silence that has surrounded medical errors and their consequenceâ€"but not by pointing fingers at caring health care professionals who make honest mistakes. After all, to err is human. Instead, this book sets forth a national agendaâ€"with state and local implicationsâ€"for reducing medical errors and improving patient safety through the design of a safer health system. This volume reveals the often startling statistics of medical error and the disparity between the incidence of error and public perception of it, given many patients' expectations that the medical profession always performs perfectly. A careful examination is made of how the surrounding forces of legislation, regulation, and market activity influence the quality of care provided by health care organizations and then looks at their handling of medical mistakes. Using a detailed case study, the book reviews the current understanding of why these mistakes happen. A key theme is that legitimate liability concerns discourage reporting of errorsâ€"which begs the question, "How can we learn from our mistakes?" Balancing regulatory versus market-based initiatives and public versus private efforts, the Institute of Medicine presents wide-ranging recommendations for improving patient safety, in the areas of leadership, improved data collection and analysis, and development of effective systems at the level of direct patient care. To Err Is Human asserts that the problem is not bad people in health careâ€"it is that good people are working in bad systems that need to be made safer. Comprehensive and straightforward, this book offers a clear prescription for raising the level of patient safety in American health care. It also explains how patients themselves can influence the quality of care that they receive once they check into the hospital. This book will be vitally important to federal, state, and local health policy makers and regulators, health professional licensing officials, hospital administrators, medical educators and students, health caregivers, health journalists, patient advocatesâ€"as well as patients themselves. First in a series of publications from the Quality of Health Care in America, a project initiated by the Institute of Medicine