Microbial Nanobiotechnology


Book Description

This edited book serves as a vital resource on the contributions of microorganisms to advances in nanotechnology, establishing their applications in diverse areas of biomedicine, environment, biocatalysis, food and nutrition, and renewable energy. It documents the impacts of microorganisms in nanotechnology leading to further developments in microbial nanobiotechnology. This book appeals to researchers and scholars of microbiology, biochemistry and nanotechnology.




Nanotechnology


Book Description

• Is an ideal introduction for scientists, engineers, researchers, and potential readers in nanotechnology • Allows readers to swiftly clench the discoursed concepts through the overviews of various fields of nanotechnology, concise summaries, and future prospects presented in the chapters • Discusses the design, methods of production and applications, and their impression on widespread areas of nanotechnology • Is illustrated throughout with excellent figures and has references accompanying each chapter




Food Nanotechnology


Book Description

Nanotechnology offers great potential to revolutionize conventional food science and the food industry. The use of nanotechnology in the food industry promises improved taste, flavor, color, texture, and consistency of foodstuffs and increased absorption and bioavailability of nutraceuticals. Food Nanotechnology: Principles and Applications examines the current state of nanoscale phenomena and processes, benefits and risks of nanotechnology. This work contains 18 chapters particularly focused on the design, production, and utilization of nanoparticles, with specific applications for the food industry. Through several studies, it has been proven that nanotechnology can offer distinct advantages over conventional methods in terms of functionality, targeted delivery of food bioactive compounds, improved food quality characteristics like texture, taste, sensory attributes and improved stability in the gastrointestinal tract, and controlled release profiles. Features Offers clear and concise coverage on application of nanotechnology in nutrient delivery, food packaging, and pathogen/pesticide detection Addresses both the technological aspects of delivering nano-based food products and the societal implications that affect take-up Covers broad range of topics including nanoemulsification, electrospraying, nanocomposites, plasma processing, and nanosensors Discusses different formulation and preparation methods for loading food bioactive compounds Exploratory in nature, this book presents the latest of such data on all aspects of applications of nanotechnology in food systems. With its practical focus on the fabrication and application of nanotechnology in food, this book is a valuable resource for students, researchers, food process engineers.




Nanobiotechnology: Principles and Applications


Book Description

Nanobiotechnology is the application of nanotechnology in biological fields. Nanobiotechnology is a multidisciplinary field that currently engages researchers in conventional as well as advanced avenues of engineering and natural sciences.The recent developments in nanobiotechnology have impacted various socio-economic sectors, including medical, agriculture, food, textile, and other industries. Although the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, therapy, and drug-delivery vehicles, bionanotechnology research is still in its infancy. The full potential of developments in this field have yet to be realized. This book discusses various nano-engineered materials or nanocarriers that are used in different situations. It presents 8 chapters that cover the application of nanobiomaterials in environmental remediation, nanofertilisers, nanobiotics against antimicrobial resistance, nanobiosensors in pathogen detection, and nanotoxicity assessments. Each chapter is structured into easy-to-read sections that explain fundamental and applied concepts of nanobiomaterials. Readers will gain a current view of the biotechnological application of modern nanomaterials and nanoparticles. The book is intended to be a primer for students and researchers in agriculture, biotechnology, and biomedical engineering courses.




Nanotechnology


Book Description

The volume explores the emerging science of nanotechnology which deals with the understanding of the fundamental physics, chemistry, biology, material science and technology of nanometer scale objects, which has become a central pillar for the next generation medical challenges such as developing tiny nanodevices, as well as for food technology. There is no doubt that the development of emerging nanotechnology based nanomedicine, nanodevices for diagnostics and therapy, drug delivery systems and other applications are fast growing research areas for chemistry, biology, physics, medicine and different disciplines of engineering. On the other hand, due to the possible use in human health and food technology, the same emerging technology might raise new ethical issues and therefore require careful analysis of ethical aspects. To summarize the recent growth, the first volume in the Nanotechnology: Principles, Applications and Ethical Considerations series discusses the basic science behind the emerging technology, which is necessary to understand how these tiny materials can be used in our daily lives. This book provides a state-of-the-art overview of this rapidly-expanding and fascinating field from the molecular level to possible applications in the medical field. It contains eight chapters written by world renowned experts in this area, covering from basic science to possible nanomedicine designs, which can have numerous applications in our society. This book is unique in its design and content, providing a depth of science for readers that will help them understand the benefits and limitations of nanotechnology as well as its ethical and social implications.




Nanobiotechnology and Nanobiosciences


Book Description

This volume introduces, in a coherent and comprehensive fashion, the Pan Stanford Series on Nanobiotechnology by defining and reviewing the major sectors of nanobiotechnology and nanobiosciences with respect to the most recent developments. It covers the basic principles and main applications of nanobiotechnology as an emerging field at the frontiers of biotechnology and nanotechnology, with contributions from leading scientists active in their respective specialties.




Nanobiotechnology


Book Description

Nanotechnology is the key technology of the 21st century. The possibility to exploit the structures and processes of biomolecules for novel functional materials, biosensors, bioelectronics and medical applications has created the rapidly growing field of nanobiotechnology. Designed as a broad survey of the field, this book combines contributions from bioorganic and bioinorganic chemistry, molecular biology, materials science and bioanalytics to fathom the full scope of current and future developments. It is divided into four main sections: * Interphase Systems * Protein-based Nanostructures * DNA-based Nanostructures * Nanoanalytics Each chapter describes in detail currently available methods and contains numerous references to the primary literature, making this the perfect "field guide" for chemists, biologists and materials scientists who want to explore the fascinating world of nanobiotechnology.




Advanced Micro- and Nano-manufacturing Technologies


Book Description

This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.




Plant Nanotechnology


Book Description

This book highlights the implications of nanotechnology in plant sciences, particularly its potential to improve food and agricultural systems, through innovative, eco-friendly approaches, and as a result to increase plant productivity. Topics include various aspects of nanomaterials: biophysical and biochemical properties; methods of treatment, detection and quantification; methods of quantifying the uptake of nanomaterials and their translocation and accumulation in plants. In addition, the effects on plant growth and development, the role of nanoparticles in changes in gene and protein expression, and delivery of genetic materials for genetic improvement are discussed. It also explores how nanotechnology can improve plant protection and plant nutrition, and addresses concerns about using nanoparticles and their compliances. This book provides a comprehensive overview of the application potential of nanoparticles in plant science and serves as a valuable resource for students, teachers, researchers and professionals working on nanotechnology.




Nanobiotechnology: A Multidisciplinary Field of Science


Book Description

The generation of well-defined nanoparticles of excellent size and shape involves physical and chemical methodologies that are complicated, expensive, and produce hazardous toxic waste that is harmful to the environment and to human health. In order to combat the disadvantages of these methods, scientists have created “the biological method,” a new synthetic methodology that serves as a proper alternative to physical and chemical methodologies because of its easy utility, low cost, rapid synthesis, controlled size characteristics, controlled toxicity, and eco-friendliness. Nanobiotechnology is the science in which living matter can be manipulated and exploited to produce materials within the nano-scale. It is a multidisciplinary field of science framed by biology, chemistry, engineering, materials, and life sciences. Different biological entities can be exploited to yield biologically synthesized nanomaterials including bacteria, actinomycetes, yeast, fungi, viruses, algae, plant extracts, and agro-industrial waste extracts. This book represents a comprehensive review concerning the state of the art in nanobiotechnology, emphasizing the use of diverse biological entities in the science, and its versatile applications. It describes currently existing methodology with the latest published references, and provides safety information. It serves as the ideal guide for scientists interested in exploring nanobiotechnology.