Combustion Chemistry and the Carbon Neutral Future


Book Description

As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies. - Provides insight on current developments in combustion chemistry as a tool for supporting a reduced-carbon future - Reviews modeling and diagnostic tools, in addition to key approaches and alternative fuels - Includes projections for the future from leaders in the field, pointing current and prospective researchers to potentially fruitful areas for exploration




Sustainable Separation Engineering


Book Description

Sustainable Separation Engineering Explore an insightful collection of resources exploring conventional and emerging materials and techniques for separations In Sustainable Separation Engineering: Materials, Techniques and Process Development, a team of distinguished chemical engineers delivers a comprehensive discussion of the latest trends in sustainable separation engineering. Designed to facilitate understanding and knowledge transfer between materials scientists and chemical engineers, the book is beneficial for scientists, practitioners, technologists, and industrial managers. Written from a sustainability perspective, the status and need for more emphasis on sustainable separations in the chemical engineering curriculum is highlighted. The accomplished editors have included contributions that explore a variety of conventional and emerging materials and techniques for efficient separations, as well as the prospects for the use of artificial intelligence in separation science and technology. Case studies round out the included material, discussing a broad range of separation applications, like battery recycling, carbon sequestration, and biofuel production. This edited volume also provides: Thorough introductions to green materials for sustainable separations, as well as advanced materials for sustainable oil and water separation Comprehensive explorations of the recycling of lithium batteries and ionic liquids for sustainable separation processes Practical discussions of carbon sequestration, the recycling of polymer materials, and AI for the development of separation materials and processes In-depth examinations of membranes for sustainable separations, green extraction processes, and adsorption processes for sustainable separations Perfect for academic and industrial researchers interested in the green and sustainable aspects of separation science, Sustainable Separation Engineering: Materials, Techniques and Process Development is an indispensable resource for chemical engineers, materials scientists, polymer scientists, and renewable energy professionals.




Functional Properties of Advanced Engineering Materials and Biomolecules


Book Description

This book shows how a small toolbox of experimental techniques, physical chemistry concepts as well as quantum/classical mechanics and statistical methods can be used to understand, explain and even predict extraordinary applications of these advanced engineering materials and biomolecules. It highlights how improving the material foresight by design, including the fundamental understanding of their physical and chemical properties, can provide new technological levels in the future.




Selectivity in Catalysis


Book Description

Discusses recent research and provides tutorial chapters on enhancing selectivity in catalysis through stereoselectivity, reaction pathway control, shape selectivity, and alloys and clusters. Presents an interdisciplinary approach to increasing selectivity in homogeneous and heterogeneous catalysis research. Includes an overview chapter that discusses the current state of the field and offers a perspective on future directions.




Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications


Book Description

Provides a comprehensive review on the brand-new development of several multiphase reactor techniques applied in energy-related processes Explains the fundamentals of multiphase reactors as well as the sophisticated applications Helps the reader to understand the key problems and solutions of clean coal conversion techniques Details the emerging processes for novel refining technology, clean coal conversion techniques, low-cost hydrogen productions and CO2 capture and storage Introduces current energy-related processes and links the basic principles of emerging processes to the features of multiphase reactors providing an overview of energy conversion in combination with multiphase reactor engineering Includes case studies of novel reactors to illustrate the special features of these reactors




Cleft and Craniofacial Surgery, an Issue of Atlas of the Oral & Maxillofacial Surgery Clinics: Volume 30-1


Book Description

In this issue of Atlas of the Oral and Maxillofacial Surgery Clinics, guest editors Drs. Mark A. Miller and David M. Yates bring their considerable expertise to the topic of Common Procedures in Cleft and Craniofacial Surgery. Articles from top experts in the field include coverage of cleft lip surgery, different surgical approaches to craniosynostosis, and other craniofacial syndromes, as well as reconstruction and bone grafting. Contains 12 relevant, practice-oriented topics including primary cleft lip deformity; cleft nasal deformity; endoscopic approaches to craniosynostosis; open approaches to craniosynostosis; cranial deformities; and more. Provides in-depth clinical reviews on common procedures in cleft and craniofacial surgery, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.




Carbon Dioxide Utilization to Sustainable Energy and Fuels


Book Description

This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.




Hydrogen Technology


Book Description

Aline Leon ́ In the last years, public attention was increasingly shifted by the media and world governmentsto the conceptsof saving energy,reducingpollution,protectingthe - vironment, and developing long-term energy supply solutions. In parallel, research funding relating to alternative fuels and energy carriers is increasing on both - tional and international levels. Why has future energy supply become such a matter of concern? The reasons are the problems created by the world’s current energy supply s- tem which is mainly based on fossil fuels. In fact, the energystored in hydrocarb- based solid, liquid, and gaseous fuels was, is, and will be widely consumed for internal combustion engine-based transportation, for electricity and heat generation in residential and industrial sectors, and for the production of fertilizers in agric- ture, as it is convenient, abundant, and cheap. However, such a widespread use of fossil fuels by a constantly growing world population (from 2. 3 billion in 1939 to 6. 5 billion in 2006) gives rise to the two problems of oil supply and environmental degradation. The problemrelated to oil supply is caused by the fact that fossil fuels are not - newable primary energy sources: This means that since the rst barrel of petroleum has been pumped out from the ground, we have been exhausting a heritage given by nature.




Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics


Book Description

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.




Nanoscale Materials


Book Description

Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.