Molecular Switches


Book Description

Täglich benutzen wir Schalter, um strombetriebene Geräte an- und abzuschalten und kein Compuer würde ohne sie funktionieren. Nach den gleichen Prinzipien funktionieren auch molekulare Schalter, die unter dem Einfluß ihrer Umwelt zwischen zwei definierten Zuständen wechseln können. Im Gegensatz zu den gewöhnlichen Schaltern sind molekulare Schalter aber außerordentlich klein und ihre Anwendung in der Nanotechnologie, Biomedizin und im Computerchipdesign öffnet neue Horizonte. Im vorliegenden Zweibänder berichten Herausgeber und Autoren über molekulare Schalter aus Katenanen und Rotaxanen, Fulgiden, Flüssigkristallen und Polypeptiden. Die Bandbreite der behandelten Themen reicht von chiroptischen Schaltern über multifunktionale Systeme bis hin zu molekularen logischen Schaltungen. Chemiker und Materialwissenschaftler in Industrie und Hochschule, die sich für einen der innovativsten Bereiche ihrer Wissenschaft interessieren, werden dieses Buch mit Gewinn lesen!




Concepts and Design of Materials Nanoarchitectonics


Book Description

This book covers introductory features underlying the field of nanoarchitectonices, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials.




Nano Design for Smart Gels


Book Description

Nano Design for Smart Gels addresses the formation and application of technological gels and how nanostructural prospects are fundamental to gelling. Topics focus on the classification of gels based on small molecules and polymer gellers, biogels, stimulation conditions, topological, thermodynamic and kinetic aspects and characterization techniques. The book outlines structure and characterization concepts in order to provide pragmatic tools for the design and tailoring of new functional gel architectures. It provides an important source for readers and researchers who are currently or may soon be in research with gels, presenting an overview of fundamental topics. - Highlights the building-blocks that make up the main functional groups that result in gelator compounds - Provides an accessible source to the most common responses of gels, classified in their functional groups - Outlines major characterization techniques, showing how they can be combined




Carbon Nanomaterials Based on Graphene Nanosheets


Book Description

Since the discovery of graphene, it has become one of the most widely and extensively studied materials. This book aims to summarize the progress in synthesis, processing, characterization and applications of a special group of nanocarbon materials derived from graphene or graphene related derivatives by using various strategies in different forms. More specifically, three forms of macrosized materials are presented, i.e., one-dimension or 1D (fibers, wires, yarns, streads, etc.), two-dimension or 2D (films, membranes, papers, sheets, etc.) and three-dimension or 3D (bulk, hydrogels, aerogels, foams, sponges, etc.). Seven chapters are included with the first chapter serving to introduce the concept, definition, and nomenclature of graphene, graphene oxide and their derivatives. The main topics are covered in Chapters 2‒7. Although they have coherent connections, each chapter of them is designed such that they can be studied independently. The target readers of this book include undergraduate students, postgraduate students, researchers, designers, engineers, professors, and program/project managers from the fields of materials science and engineering, applied physics, chemical engineering, biomaterials, materials manufacturing and design, institutes, and research founding agencies.




Mechanical and Materials Engineering of Modern Structure and Component Design


Book Description

This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.




Inorganic Nanosheets and Nanosheet-Based Materials


Book Description

This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "fully nanoscopic" characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed.




Advanced Nanomaterials for Catalysis and Energy


Book Description

Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications




Device Circuit Co-Design Issues in FETs


Book Description

This book provides an overview of emerging semiconductor devices and their applications in electronic circuits, which form the foundation of electronic devices. Device Circuit Co-Design Issues in FETs provides readers with a better understanding of the ever-growing field of low-power electronic devices and their applications in the wireless, biosensing, and circuit domains. The book brings researchers and engineers from various disciplines of the VLSI domain together to tackle the emerging challenges in the field of engineering and applications of advanced low-power devices in an effort to improve the performance of these technologies. The chapters examine the challenges and scope of FinFET device circuits, 3D FETs, and advanced FET for circuit applications. The book also discusses low-power memory design, neuromorphic computing, and issues related to thermal reliability. The authors provide a good understanding of device physics and circuits, and discuss transistors based on the new channel/dielectric materials and device architectures to achieve low-power dissipation and ultra-high switching speeds to fulfill the requirements of the semiconductor industry. This book is intended for students, researchers, and professionals in the field of semiconductor devices and nanodevices, as well as those working on device-circuit co-design issues.




Nano-Energetic Materials


Book Description

This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.




Nano-Architectured and Nanostructured Materials


Book Description

The book identifies new nanometric architectures that would be of particular interest for applications and the technological route to reach them. Nano-architectures of interest are for optical, electrical, magnetic, mechanical properties and reactivity as well as for specific applications such as catalysis and medical diagnostic and drug delivery. Nano-architectures would be metals, alloys, ceramics, semi-conductors, polymers or hybrids inorganic-polymers materials. The book places special emphasis on crucial technical aspects of the fabrication, the control and the characterisation of complex nano-architectures.