Nanostructured Photocatalyst via Defect Engineering


Book Description

This book helps readers comprehend the principles and fundamentals of defect engineering toward realization of an efficient photocatalyst. The volume consists of two parts, each of which addresses a particulate type of defects. The first, larger section provides a comprehensive and rigorous treatment of the behaviour and nature of intrinsic defects. The author describes how their controlled introduction and consequent manipulation over concentration, distribution, nature and diffusion is one of the most effective and practical methodologies to modify the properties and characteristics of target photocatalytic materials. The second part of the book explains the formation of extrinsic defects in the form of metallic and non-metallic dopants and gives a detailed description of their characteristics as this approach is also often used to fabricate an efficient photocatalyst. Filling the gap in knowledge on the correlation between introduction of defects in various semiconducting materials and their photocatalytic performance, the book is ideal for graduate students, academics and researchers interested in photocatalysts, defect engineering, clean energy, hydrogen production, nanoscale advanced functional materials, CO2 deactivation, and semiconductor engineering.




Advancement of Metal Oxide Materials for Photocatalytic Application


Book Description

This book investigates applicability of various emerging strategies to improve important properties and features of metal oxide materials that can be used further to advance their photocatalytic and photoelectrochemical performances. The range of discussed strategies includes introduction of intrinsic and extrinsic deficiencies, fabrication of heterojunction and utilizing of metal nanoparticles in the form of deposited or embedded formations. Each of them is addressed as separate case in order to reach full and comprehensive assessment of their most fundamental principles and basics as well as accessing pivotal advantages and disadvantages. Furthermore, additional discussion is dedicated to achieving thorough awareness over methods and experimental protocols that are used to realize them and also probing changes which they induce in electronic and geometrical configurations of metal oxide materials. It is believed that this book might become a valuable addition to extend further current knowledge about photocatalysis and material processing.




Advanced Flexible Ceramics


Book Description

Advanced Flexible Ceramics: Design, Properties, Manufacturing, and Emerging Applications provides detailed information on the properties and applications of advanced flexible ceramics. Sections cover materials dependent flexible behavior, microstructure and phases, the operational life of ceramics, how flexible materials can influence smart behavior (shape memory and self-healing), and thermal, physical, mechanical, electrical and optical properties. Various processing routes such as powder metallurgy, both physical and chemical vapor deposition, sol-gel, 3D print, and roll-to-roll processing are also explained in detail. The later section of the book provides detailed coverage of emerging technological applications. Additional chapters cover cost-effectiveness and the global market and recycling and future challenges and perspectives. This will be an essential reference resource for academic and industrial researchers working in the fields of refractory linings, high-temperature equipment, shielding, and MEMS/NEMS. - Covers a new class of flexible ceramic materials for advanced technological applications - Discusses a broad range of topics, including characterization, synthesis, microstructure and properties - Provides advanced technological aspects such as applications, manufacturing processes, industrial assessments and economics




Photochemistry: Volume 50


Book Description

Providing critical analysis of the topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications.




Technologies for Sustainability in Energy and the Environment


Book Description

The focus of technological development has changed from sustaining life to improving the quality of life. This change is exerting excessive demand for fuel and resources. The consequences manifest as challenges to environmental and energy sustainability and to climate change. Thus, further technological advancements need urgent re-focusing to save the earth from becoming uninhabitable. This book looks specifically at the direction of technologies and research innovations, including those just entering the market for abating, rehabilitating, and restoring degraded environments. Scientific and engineering perspectives are presented on promising technologies for a) sustaining environmental conditions, which are cost-effective and efficient with the potential to reach the most underprivileged world economies and b) clean energy production, which is either renewable or has low- or zero-carbon emissions. This book is a ‘must-read’ for a diverse and interdisciplinary audience ranging from academics, researchers, industry professionals and advanced students.




Nanostructured Materials for Visible Light Photocatalysis


Book Description

Nanostructured Materials for Visible Light Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first three chapters include a general introduction, basic principles, mechanisms, and synthesis methods of nanomaterials for visible light photocatalysis. Recent advances in carbon, bismuth series, transition metal oxide and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed. Later chapters describe the role of phosphides, nitrides, and rare earth-based nanostructured-based materials in visible light photocatalysis, as well as the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, morphology of nanostructured materials and green technology for efficient dye removal under visible-light irradiation are also explored. Other topics covered include large-scale production of nanostructured materials, the challenges in present photocatalytic research, the future scope of nanostructured materials regarding environmental hazard remediation under visible light, and solar light harvesting. This book is a valuable reference to researchers and enables them to learn more about designing advanced nanostructured materials for wastewater treatment and visible-light irradiation. - Covers all the recent developments of nanostructured photocatalytic materials - Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials - Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale




Nanostructured Photocatalysts


Book Description

Nanostructured Photocatalysts: From Fundamental to Practical Applications offers a good opportunity for academic, industrial researchers and engineers to gain insights on the fundamental principles and updated knowledge on the engineering aspects and various practical applications of photocatalysis. This book comprehensively and systematically reviews photocatalytic fundamental aspects, ranging from reaction mechanism, kinetic modeling, nanocatalyst synthesis and design, essential material characterization using advanced techniques, and novel reactor design and scale-up. Future perspectives, techno-economical evaluation and lifecycle assessment of photocatalytic processes are also provided. Finally, a wide range of practical, important and emerging photocatalytic applications, namely wastewater treatment, air pollution remediation, renewable and green energy generation, and vital chemical production are thoroughly covered, making this book useful and beneficial for engineers, scientists, academic researchers, undergraduates and postgraduates. - Provides a fundamental understanding of photocatalysis - Covers all aspects of recent developments in photocatalytic processes and photocatalytic materials - Focuses on advanced photocatalytic applications and future research advancements on energy, environment, biomedical, and other specialty fields - Contains contributions from leading international experts in photocatalysis - Presents a valuable reference for academic and industrial researchers, scientists and engineers




Environmental Nanotechnology Volume 5


Book Description

This book presents comprehensive reviews on the latest developments of nanotechnologies to detect and remove pollutants in water, air and food. Polymer nanocomposites, nanoparticles from microbes and the application of nanotechnologies for desalination and agriculture are also discussed. Pollution of water and air by contaminants and diseases is a major health issue leading globally to millions of deaths yearly according to the World Health Organization. Such issue requires advanced methods to clean environmental media.







Nanostructured Materials for Environmental Applications


Book Description

This book discusses how nanostructured materials play a key role in helping address environmental challenges. Employing nanostructured materials in catalysis can increase the efficient decomposition of toxic pollutants in air, water, and soil. This multidisciplinary book discusses the most promising nanostructured materials made-up of metals, metal oxides, metal chalcogenides, multi-metal oxides, carbon nanostructures, and hybrid materials that can address environmental remediation. It provides a well-referenced introduction to newcomers from allied disciplines and will be valuable to researchers in academia, industry, and government working on solutions to environmental problems.