Nanostructured Piezoelectric Energy Harvesters


Book Description

This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being investigated for the development of nanostructured piezoelectric energy harvesting devices, also known as nanogenerators. There is growing interest in strategies for energy harvesting that use a variety of existing and well-known materials in new morphologies or architectures. A key change of morphology to enable new functionality is the nanostructuring of a material. One area of particular interest is self-powered devices based on portable energy harvesting. The charging of personal electronic equipment and other small-scale electronic devices such as sensors is a highly demanding environment that requires innovative solutions. The output of these so-called nanogenerators is explained in terms of the requirements for self-powered applications. The authors summarise the range of production methods used for nanostructured devices, which require much lower energy inputs than those used for bulk systems, making them more environmentally friendly and also compatible with a wide range of substrate materials.




Piezoelectric Energy Harvesting


Book Description

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.




Magnetic Nanostructured Materials


Book Description

Magnetic Nanostructured Materials: From Lab to Fab presents a complete overview of the translation of nanostructured materials into realistic applications, drawing on the most recent research in the field to discuss the fundamentals, synthesis and characterization of nanomagnetics. A wide spectrum of nanomagnetic applications is included, covering industrial, environmental and biomedical fields, and using chemical, physical and biological methods. Materials such as Fe, Co, CoxC, MnGa, GdSi, ferrite nanoparticles and thin films are highlighted, with their potential applications discussed, such as magnetic refrigeration, energy harvesting, magnetic sensors, hyperthermia, MRI, drug delivery, permanent magnets, and data storage devices. Offering interdisciplinary knowledge on the materials science of nanostructured materials and magnetics, this book will be of interest to researchers in materials science, engineering, physics and chemistry with interest in magnetic nanomaterials, as well as postgraduate students and professionals in industry and government. - Provides interdisciplinary knowledge on the materials science of nanostructured materials and magnetics - Aids in the understanding of complex fundamentals and synthesis methods for magnetic nanomaterials - Includes examples of real applications - Shows how laboratory work on magnetic nanoparticles connects to industrial implementation and applications




Nanostructured Zinc Oxide


Book Description

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors




Hierarchical Nanostructures for Energy Devices


Book Description

Surface area has a directly relationship with the efficiency of energy devices. Hierarchical nanostructuring has the potential to greatly increase surface area, and their electrical properties are favourable, not only to energy generation and storage, but also energy-consuming electronic circuits. This book provides systematic coverage of how nanostructured materials can be applied to energy devices, with an emphasis on the process of generation to storage and consumption. The fundamentals (including properties, characterisation and synthesis) are clearly presented across the first chapters of the book, providing readers new to the field with a clear overview of this expanding topic. The detailed discussion of applications will be an inspiration to those already well-versed in the field. The editors have more than a decade of experience in working on all aspects of energy generation and storage - in academia, national laboratories and industry. The book presents a balanced view from all sectors and is presented in a format accessible by postgraduate students and professional researchers alike.




Micro Energy Harvesting


Book Description

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.




Nanotechnology for the Energy Challenge


Book Description

Unique in providing an overview of the subject on the scientific level, this book presents the current state of the art with regard to different aspects of sustainable energy production and its efficient storage. The broad scope ranges from nanomaterials for energy production, via fuel cells and nanostructured materials for fuel production, right up to supercapacitors and climate change. Edited by a rising star within the community, this is an invaluable work on a hot topic for materials scientists, solid state, surface and physical chemists, as well as those chemists working in industry and chemical engineers.




Ferroelectric Materials for Energy Applications


Book Description

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.




Energy Harvesting for Autonomous Systems


Book Description

This unique resource provides a detailed understanding of the options for harvesting energy from localized, renewable sources to supply power to autonomous wireless systems. You are introduced to a variety of types of autonomous system and wireless networks and discover the capabilities of existing battery-based solutions, RF solutions, and fuel cells. The book focuses on the most promising harvesting techniques, including solar, kinetic, and thermal energy. You also learn the implications of the energy harvesting techniques on the design of the power management electronics in a system. This in-depth reference discusses each energy harvesting approach in detail, comparing and contrasting its potential in the field.




Nanostructured Thin Films


Book Description

Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance