Columbia Crew Survival Investigation Report


Book Description

NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia's external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The Columbia accident was not survivable. After the Columbia Accident Investigation Board (CAIB) investigation regarding the cause of the accident was completed, further consideration produced the question of whether there were lessons to be learned about how to improve crew survival in the future. This investigation was performed with the belief that a comprehensive, respectful investigation could provide knowledge that can protect future crews in the worldwide community of human space flight. Additionally, in the course of the investigation, several areas of research were identified that could improve our understanding of both nominal space flight and future spacecraft accidents. This report is the first comprehensive, publicly available accident investigation report addressing crew survival for a human spacecraft mishap, and it provides key information for future crew survival investigations. The results of this investigation are intended to add meaning to the sacrifice of the crew's lives by making space flight safer for all future generations.










Taming Liquid Hydrogen


Book Description







Fundamentals of Electric Propulsion


Book Description

Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.




Introduction to Aircraft Flight Mechanics


Book Description

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.




Integrated Design for Space Transportation System


Book Description

The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbital mechanics of satellites including different coordinate frames, orbital perturbations and orbital transfers are explained. For launching the satellites to meet specific mission requirements, viz., payload/orbit, design considerations, giving step by step procedure are briefed. The selection methodology for launch vehicle configuration, its optimum staging and the factors which influence the vehicle performance are summarized. The influence of external, internal and dynamic operating environments experienced by the vehicle subsystems and the remedial measures needed are highlighted. The mission design strategies and their influence on the vehicle design process are elaborated. The various critical aspects of STS subsystems like flight mechanics, propulsion, structures and materials, thermal systems, stage auxiliary systems, navigation, guidance and control and the interdependencies and interactions between them are covered. The design guidelines, complexity of the flight environment and the reentry dynamics for the reentry missions are included. The book is not targeted as a design tool for any particular discipline or subsystem. Some of the design related equations or expressions are not attempted to derive from the first principle as this is beyond the scope of this book. However, the important analytical expressions, graphs and sketches which are essential to provide in-depth understanding for the design process as well as to understand the interactions between different subsystems are appropriately included.




CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999


Book Description

These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimazation, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.