Natural Computing for Simulation-Based Optimization and Beyond


Book Description

This SpringerBrief bridges the gap between the areas of simulation studies on the one hand, and optimization with natural computing on the other. Since natural computing methods have been applied with great success in several application areas, a review concerning potential benefits and pitfalls for simulation studies is merited. The brief presents such an overview and combines it with an introduction to natural computing and selected major approaches, as well as with a concise treatment of general simulation-based optimization. As such, it is the first review which covers both the methodological background and recent application cases. The brief is intended to serve two purposes: First, it can be used to gain more information concerning natural computing, its major dialects, and their usage for simulation studies. It also covers the areas of multi-objective optimization and neuroevolution. While the latter is only seldom mentioned in connection with simulation studies, it is a powerful potential technique. Second, the reader is provided with an overview of several areas of simulation-based optimization which range from logistic problems to engineering tasks. Additionally, the brief focuses on the usage of surrogate and meta-models. The brief presents recent application examples.




Natural Computing for Simulation and Knowledge Discovery


Book Description

Nature has long provided the inspiration for a variety of scientific discoveries in engineering, biomedicine, and computing, though only recently have these elements of nature been used directly in computational systems. Natural Computing for Simulation and Knowledge Discovery investigates the latest developments in nature-influenced technologies. Within its pages, readers will find an in-depth analysis of such advances as cryptographic solutions based on cell division, the creation and manipulation of biological computers, and particle swarm optimization techniques. Scientists, practitioners, and students in fields such as computing, mathematics, and molecular science will make use of this essential reference to explore current trends in natural computation and advance nature-inspired technologies to the next generation.




Simulation-Based Optimization


Book Description

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to convergence analysis of some of the methods enumerated above. *Computer programs for many algorithms of simulation-based optimization.




Natural Computing and Beyond


Book Description

This book contains the joint proceedings of the Winter School of Hakodate (WSH) 2011 held in Hakodate, Japan, March 15–16, 2011, and the 6th International Workshop on Natural Computing (6th IWNC) held in Tokyo, Japan, March 28–30, 2012, organized by the Special Interest Group of Natural Computing (SIG-NAC), the Japanese Society for Artificial Intelligence (JSAI). This volume compiles refereed contributions to various aspects of natural computing, ranging from computing with slime mold, artificial chemistry, eco-physics, and synthetic biology, to computational aesthetics.




Stochastic Simulation Optimization


Book Description

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.




Handbook of Natural Computing


Book Description

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.




General-Purpose Optimization Through Information Maximization


Book Description

This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization. The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functional analysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible. The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory.




Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries


Book Description

This book includes the refereed Selected Papers of the 20th International Conference on Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries, CAAD Futures 2023, held in Delft, The Netherlands, in July 5–7, 2023. The 43 full papers included in this book were carefully reviewed and selected from 144 submissions. They were organized in topical sections as follows: ​algorithmic architectural design; AI-powered architectural ideation; performance-based design, urban models and analysis; urban design; digital design, materials and fabrication; spatial information, data and semantics; building data analysis, visualisation, interaction; and building massing and layouts.




Reliability-Based Optimization of Floating Wind Turbine Support Structures


Book Description

This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering.




Scatter Search


Book Description

The book Scatter Search by Manuel Laguna and Rafael Martí represents a long-awaited "missing link" in the literature of evolutionary methods. Scatter Search (SS)-together with its generalized form called Path Relinking-constitutes the only evolutionary approach that embraces a collection of principles from Tabu Search (TS), an approach popularly regarded to be divorced from evolutionary procedures. The TS perspective, which is responsible for introducing adaptive memory strategies into the metaheuristic literature (at purposeful level beyond simple inheritance mechanisms), may at first seem to be at odds with population-based approaches. Yet this perspective equips SS with a remarkably effective foundation for solving a wide range of practical problems. The successes documented by Scatter Search come not so much from the adoption of adaptive memory in the range of ways proposed in Tabu Search (except where, as often happens, SS is advantageously coupled with TS), but from the use of strategic ideas initially proposed for exploiting adaptive memory, which blend harmoniously with the structure of Scatter Search. From a historical perspective, the dedicated use of heuristic strategies both to guide the process of combining solutions and to enhance the quality of offspring has been heralded as a key innovation in evolutionary methods, giving rise to what are sometimes called "hybrid" (or "memetic") evolutionary procedures. The underlying processes have been introduced into the mainstream of evolutionary methods (such as genetic algorithms, for example) by a series of gradual steps beginning in the late 1980s.