Natural Gas Seepage


Book Description

The book offers a modern, comprehensive, and holistic view of natural gas seepage, defined as the visible or invisible flow of gaseous hydrocarbons from subsurface sources to Earth’s surface. Beginning with definitions, classifications for onshore and offshore seepage, and fundamentals on gas migration mechanisms, the book reports the latest findings for the global distribution of gas seepage and describes detection methods. Seepage implications are discussed in relation to petroleum exploration, environmental impacts (hazards, pollution, atmospheric emissions, and past climate change), emerging scientific issues (abiotic gas and methane on Mars), and the role of seeps in ancient cultures. With an updated bibliography and an integrated analysis of available data, the book offers a new fundamental awareness - gas seepage is more widespread than previously thought and influences all of Earth’s external “spheres”, including the hydrosphere, atmosphere, biosphere, and anthroposphere.




Hydrocarbon Seepage


Book Description

"With the increased resolution power of many geophysical methods, we are seeing direct evidence of seeps on a wide variety of data, including conventional seismic. New methods and technology have also evolved to better measure and detect seeps and their artifacts and reservoir charge and to map migration and remigration routes. In addition, detection of seepage is important for minimizing the risks associated with shallow gas drilling hazards, ensuring platform stability, and preventing well blow-outs. This volume is organized into three sections, each with a different focus. The first section, "Descriptions and Observations of Seeps", includes field studies, observations of seep environments, migration systems, and use of modern sampling techniques. The second section, "Science of Seepage -- Methodology", discusses new techniques including DNA sampling, use of biomarkers, Neural Network analysis, and remote multispectral analysis. The final section, "Implications of Seeps", shows how seeps may be used to reduce prospect risk and assess risk elements such as trap seal and fault leakage. This volume is intended to be a reference for understanding seep occurrences and demonstrating the development and use of new technologies to image them with a focus on exploration and field development applications. It will be a valuable reference to geologists, geophysicists, and petroleum engineers everywhere"--Provided by publisher.







Gas Migration


Book Description

This breakthrough new book may help save countless lives and avoid enormous losses. It presents a methodology for using gas migration to predict earthquakes and explosive gas buildup. Using rigorous scientific investigation and documented worldwide case histories, this remarkable book presents compelling evidence showing that changes in gas rates, composition, and migration accompany the tectronic events preceding earthquakes and their associated seismic events, such as volcanoes and tsunamis. Because these gas parameters are detectable and measurable, they provide an early warning of seismic activity.Gas Migration is the first book to accumulate, analyze and apply the interdisciplinary knowledge on gas migration and detail its connection to tectronic, seismic, and geologic phenomena. It combines geological, geochemical, geophysical, seismological, and petroleum engineering insights to demonstrate how gas migration and its associated phenomena can be used in earthquake and environmental geohazard identification and prediction. Topics include-·Tectonics and Earthquakes·Gas Migration at Plate Boundaries·Surface Soil-Gas Surveys·Faults and Petroleum Reservoirs·Earthquake Precursors·Whispering Gases·Paths and Mechanics of Gas Migration·Subsidence, Gas Migration, and Seismic Activity·And much moreWith this information, environmental specialists, civil engineers, petroleum geologists, seismologists, and urban planners now have a new and powerful conceptual basis and tool for understanding and perhaps even predicting gas explosions and earthquakes.




Oil in the Sea III


Book Description

Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.




Nuclear Stimulation of Natural Gas


Book Description




Nuclear Stimulation of Natural Gas


Book Description




Environmental Aspects of Oil and Gas Production


Book Description

Oil and gas still power the bulk of our world, from automobiles and the power plants that supply electricity to our homes and businesses, to jet fuel, plastics, and many other products that enrich our lives. With the relatively recent development of hydraulic fracturing ("fracking"), multilateral, directional, and underbalanced drilling, and enhanced oil recovery, oil and gas production is more important and efficient than ever before. Along with these advancements, as with any new engineering process or technology, come challenges, many of them environmental. More than just a text that outlines the environmental challenges of oil and gas production that have always been there, such as gas migration and corrosion, this groundbreaking new volume takes on the most up-to-date processes and technologies involved in this field. Filled with dozens of case studies and examples, the authors, two of the most well-known and respected petroleum engineers in the world, have outlined all of the major environmental aspects of oil and gas production and how to navigate them, achieving a more efficient, effective, and profitable operation. This groundbreaking volume is a must-have for any petroleum engineer working in the field, and for students and faculty in petroleum engineering departments worldwide.




Gas Hydrates 2


Book Description

Gas hydrates in their natural environment and for potential industrial applications (Volume 2).




Encyclopedia of Geochemistry


Book Description

The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.