Natural Gases in Marine Sediments


Book Description

In July 1972, the U.S. Office of Naval Research identified several areas that it interpreted as being of interest to the U.S. Navy. Four of these research areas were then selected for their special importance in understanding physical processes on the ocean floor. In some of these, a great wealth of data has accumulated over the past two or three decades, but controversy exists in the interpretation of the results. In others, new techniques have re cently been devised that could lead to the collection and synthesis of new information. There was yet a third area in which little study had been undertaken and the results available appeared of great potential importance. The latter subject constitutes the title of this volume. To assess the information available and to facilitate plans for further research in the fields of interest that had been identified, the U.S. Office of Naval Research sponsored four symposia. The first was held in November 1972 at the University of California Con ference Center, Lake Arrowhead. The title of the symposium was "Natural Gases in Marine Sediments and Their Mode of Distribution". Twenty lectures were presented over a three-day period. All but two participants at this symposium subsequently submitted papers, which are published in this volume. In addition, Dr. K.O. Emery, who did not attend the symposium, supplied a manuscript on a topic most re levant to the subject matter discussed.




Methane Hydrates in Quaternary Climate Change


Book Description

Recent discoveries from ice-core and marine sediments suggest that global climate systems can change from glacial to near-interglacial temperatures within decades. In order to explain this phenomenon, the authors (all affiliated with the Department of Geological Sciences, U. of California) advance a hypothesis that suggests that the massive energy needed for these changes came for the release of "frozen" methane hydrates (clathrates) stored in marine sediments on continental margins. They argue that the release of the methane caused feedback processes that would explain the surprisingly rapid changes. Annotation copyrighted by Book News, Inc., Portland, OR.




Lake Kinneret


Book Description

This condensed volume summarizes updated knowledge on the warm-monomictic subtropical Lake Kinneret, including its geophysical setting, the dynamics of physical, chemical and biological processes and the major natural and anthropogenic factors that affect this unique aquatic ecosystem. This work expands on a previous monograph on Lake Kinneret published in 1978 and capitalizes on the outcome of more than 40 years of research and monitoring activities. These were intensively integrated with lake management aimed at sustainable use for supply of drinking water, tourism, recreation and fishery. The book chapters are aimed at the limnological community, aquatic ecologists, managers of aquatic ecosystems and other professionals. It presents the geographic and geological setting, the meteorology and hydrology of the region, continues with various aspects of the pelagic and the littoral systems. Finally, the last section of the book addresses lake management, demonstrating how the accumulated knowledge was applied in order to manage this important source of freshwater. The section on the pelagic system comprises the heart of the book, addressing the major physical processes, external and internal loading, the pelagic communities (from bacteria to fish), physiological processes and the major biogeochemical cycles in the lake.




Natural Gas Hydrates


Book Description

Natural Gas Hydrates, Fourth Edition, provides a critical reference for engineers who are new to the field. Covering the fundamental properties, thermodynamics and behavior of hydrates in multiphase systems, this reference explains the basics before advancing to more practical applications, the latest developments and models. Updated sections include a new hydrate toolbox, updated correlations and computer methods. Rounding out with new case study examples, this new edition gives engineers an important tool to continue to control and mitigate hydrates in a safe and effective manner. - Presents an updated reference with structured comparisons on hydrate calculation methods that are supported by practical case studies and a current list of inhibitor patents - Provides a comprehensive understanding of new hydrate management strategies, particularly for multiphase pipeline operations - Covers future challenges, such as carbon sequestration with simultaneous production of methane from hydrates




Methane Gas Hydrate


Book Description

Gas hydrates represent one of the world’s largest untapped reservoirs of energy and, according to some estimates, have the potential to meet global energy needs for the next thousand years. "Methane Gas Hydrate" examines this potential by focusing on methane gas hydrate, which is increasingly considered a significant source of energy. "Methane Gas Hydrate" gives a general overview of natural gas, before delving into the subject of gas hydrates in more detail and methane gas hydrate in particular. As well as discussing methods of gas production, it also discusses the safety and environmental concerns associated with the presence of natural gas hydrates, ranging from their possible impact on the safety of conventional drilling operations to their influence on Earth’s climate. "Methane Gas Hydrate" is a useful reference on an increasingly popular energy source. It contains valuable information for chemical engineers and researchers, as well as for postgraduate students.




Ocean-Atmosphere Interactions of Gases and Particles


Book Description

The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.




Encyclopedia of Geochemistry


Book Description

The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.




Natural Gas Hydrate in Oceanic and Permafrost Environments


Book Description

This is the first book published on the emerging research field of naturally occurring gas hydrates (focusing on methane hydrate) that is not primarily a physical chemistry textbook. This book is designed as a broad introduction to the field of hydrate science, demonstrating the significance of the hydrate cycle to energy resource potential, seafloor stability, and global climate and climate change, along with other issues. The best known hydrate localities are described, as are research and laboratory methods and results. The book consists of chapters grouped in related themes that present up-to-date information on methane hydrate. Each of the contributing authors is expert in hydrate science and most have been carrying out research in hydrate for a considerable time. Audience: This book will be an important source of information for marine geologists, geophysicists, geochemists, and petroleum geologists and regulators. It is also intended as a graduate-level textbook.




Strength Testing of Marine Sediments


Book Description

Philadelphia, PA : ASTM, 1985.