Natural Molecules in Neuroprotection and Neurotoxicity


Book Description

Natural Molecules in Neuroprotection and Neurotoxicity brings together research in the area of natural compounds and their dual effects of neuroprotection and neurotoxicity when interacting with brain cells. This book is organized into four sections that address molecular mechanism underlying neuroprotection and neurotoxicity, neuroprotection mediated by natural molecules, neurotoxicity induced by natural compounds and nanotechnology-related strategies utilized in neuroprotection. Written by well-known researchers all over the world, chapters provide an in-depth analysis of numerous molecules, such as algae, plant and fungus-derived molecules, and comprehensively discuss their mechanisms of action and possible clinical applications. This book provides an essential reference for researchers and clinical scientists interested in the effects of natural compounds on the human health and disease. - Covers both neuroprotective and neurotoxic outcomes resulted from the exposure of brain cells to natural molecules - Analyzes numerous natural compounds, including animal, vegetal, fungal, bacterial, and marine-derived molecules - Discusses the effects of the metabolism of microbiota on the biotransformation of natural molecules and the consequences of these processes on brain cells - Contains a section focused on the nanotechnology-related strategies utilized to enhance the bioavailability of natural molecules to brain cells




Discovery and Development of Neuroprotective Agents from Natural Products


Book Description

Discovery and Development of Neuroprotective Agents from Natural Products draws together global research on medicinal agents from natural sources as starting points for the design of neuroprotective drugs. From the prediction of promising leads and identification of active agents to the extraction of complex molecules, the book explores a range of important topics to support the development of safer, more economical therapeutics for these increasingly prevalent diseases. Beginning with an overview of current developments in the field, the book goes on to explore the identification, extraction and phytochemistry of such neuroprotective agents as antioxidants, biophenols and naturally occurring anti-inflammatory steroid analogues. Specific natural sources of bioactive agents are reviewed, and the development of these agents into therapeutics for a number of specific neurological disorders, including Alzheimer's disease, Parkinson's disease and ischemic brain stroke, are discussed. Combining the expertise of specialists from around the world, this in the Natural Products Drug Discovery series aims to support and encourage researchers in the investigation of natural sources as starting points for the development of standardized, safe and effective neuroprotective drugs. - Features chapters written by active researchers and leading global experts deeply engaged in the research field of natural product chemistry for drug discovery - Includes comprehensive coverage of cutting-edge research advances in the design of drugs from natural products targeted at different kinds of neurodegenerative diseases - Offers a practical review of identification, isolation and extraction techniques to support medicinal chemists in the lab




Neuroprotective Effects of Phytochemicals in Neurological Disorders


Book Description

Phytochemicals are naturally occurring bioactive compounds found in edible fruits, plants, vegetables, and herbs. Unlike vitamins and minerals, phytochemicals are not needed for the maintenance of cell viability, but they play a vital role in protecting neural cells from inflammation and oxidative stress associated with normal aging and acute and chronic age-related brain diseases. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the advances in our understanding of the potential neuroprotective benefits that these naturally occurring chemicals contain. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the role that a number of plant-based chemical compounds play in a wide variety of neurological disorders. Chapters explore the impact of phytochemicals on neurotraumatic disorders, such as stroke and spinal cord injury, alongside neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as neuropsychiatric disorders such as depression and schizophrenia. The chapters and sections of this book provide the reader with a big picture view of this field of research. Neuroprotective Effects of Phytochemicals in Neurological Disorders aims to present readers with a comprehensive and cutting edge look at the effects of phytochemicals on the brain and neurological disorders in a manner useful to researchers, neuroscientists, clinical nutritionists, and physicians.




Natural Products and Neuroprotection


Book Description

Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.




Oxidative Stress and Neurodegenerative Disorders


Book Description

Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. Brain cells are continuously exposed to reactive oxygen species generated by oxidative metabolism, and in certain pathological conditions defense mechanisms against oxygen radicals may be weakened and/or overwhelmed. DNA is a potential target for oxidative damage, and genomic damage can contribute to neuropathogenesis. It is important therefore to identify tools for the quantitative analysis of DNA damage in models on neurological disorders. This book presents detailed information on various neurodegenerative disorders and their connection with oxidative stress. This information will provide clinicians with directions to treat these disorders with appropriate therapy and is also of vital importance for the drug industries for the design of new drugs for treatment of degenerative disorders.* Contains the latest information on the subject of neurodegenerative disorders* Reflects on various factors involved in degeneration and gives suggestions for how to tackle these problems




Nutraceuticals and Natural Product Derivatives


Book Description

Introduces readers to the growing applications of nutraceuticals and other natural product derivatives This comprehensive book presents a prophylactic and therapeutic approach to chronic disease prevention strategy by highlighting the translational potential of plant-derived dietary and non-dietary factors from epidemiological, laboratory, and clinical studies. It also shares the experiences of highly reputed experts working in the area of phytomedicine and nutraceutical agents in chemoprevention, to promote the significance of natural products and dietary factors as an elite priority for containing chronic diseases in the human population. Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery starts by examining natural food sources for the control of glycemia and the prevention of diabetic complications. It then looks at the anti-aging effects of sulfur-containing amino acids and nutraceuticals, and the potential of garcinia fruits to combat metabolic syndrome. Other topics covered include honey- and propolis-mediated regulation of protein networks in cancer cells; recent trends in drug discovery against Alzheimer’s disease; the therapeutic potential of metalloherbal nanoceuticals; and much more. Offers an alternative, natural approach to the prevention of chronic diseases Emphasizes the potential of plant-derived dietary and non-dietary factors from epidemiological, laboratory, and clinical studies Features contributions from world-renowned experts in the field of phytomedicine and nutraceutical agents in chemoprevention Includes prevention strategies in normal/risk populations through routine inclusion of specific dietary regimens and as therapeutic strategy for better management through adjuvant interventions with conventional treatment protocols Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery will appeal to graduate students and professionals in cell and molecular biology, translational research, pharmacology/drug discovery, medicinal chemistry, and clinical nutrition.




AI-Powered Advances in Pharmacology


Book Description

In the field of pharmaceutical sciences, the integration of artificial intelligence (AI) has emerged as a groundbreaking force, propelling the field into uncharted territories of discovery and innovation. As traditional approaches in drug discovery and development encounter new challenges, the need for cutting-edge technologies becomes increasingly apparent. AI-Powered Advances in Pharmacology offers an insightful exploration of this critical intersection between AI and pharmacological research. This book delves into how AI technologies are reshaping the understanding of diseases, predicting drug responses, and optimizing therapeutic interventions. It navigates through the relationship between AI algorithms, big data analytics, and traditional pharmacological methodologies, promising to accelerate drug development and usher in a new era of precision medicine. The primary objective of AI-Powered Advances in Pharmacology is to conduct a thorough exploration of the integration of artificial intelligence (AI) into pharmacological research, shedding light on its transformative impact on drug discovery, development, and personalized medicine. This comprehensive overview aims to serve as a valuable resource for researchers, practitioners, and students in the field, bridging the gap between traditional pharmacological approaches and AI methodologies. Through case studies and discussions of emerging trends, the book contributes to the evolving landscape of pharmacology, fostering a deeper understanding of diseases, optimizing therapeutic interventions, and shaping the future of precision medicine. By providing practical insights, it aims to inspire further advancements at the intersection of artificial intelligence and pharmacology.




The Benefits of Natural Products for Neurodegenerative Diseases


Book Description

Focuses on the effects of natural products and their active components on brain function and neurodegenerative disease prevention. Phytochemicals such as alkaloids, terpenes, flavanoids, isoflavones, saponins etc are known to possess protective activity against many neurological diseases. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signaling pathways associated with protein folding and neuro-inflammation. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, disorders, or insults, such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, traumatic brain injury, and other neuronal dysfunctions. However, the use of these antioxidants in the management of neurodegenerative conditions has so far been not well understood. This is a comprehensive collection addressing the effects on the brain of natural products and edible items such as reservatrol, curcumin, gingerol, fruits, vegetables, nuts, and marine products.




Neurodegenerative Diseases


Book Description

Provides a timely overview of critical advances in molecular and cellular neurobiology, covers key methodologies driving progress, and highlights key future directions for research on neuronal injury and neurodegeneration relevant to neuronal brain pathologies. The editors bring together contributions from internationally recognized workers in the field to provide an up to date account of how and why molecular and cellular neurobiology is such an important area for clinical neuroscience. Understanding the molecular aspects of a number of neurodegenerative conditions such as Parkinson's or Alzheimer's disease for the purpose of improving patient management remains a major challenge of neurobiology be it from the basic or clinical perspective. A strategic evaluation of research contributions and the power of modern methods will help advance knowledge over the next years.




Oxidative Stress


Book Description

This book provides a comprehensive overview of the oxidative stress related mechanisms in biological systems and the involvement of reactive oxygen and nitrogen species (ROS and RNS), the damage of DNA, proteins, and lipids caused by oxidative stress, the protection of cells and tissues against free radicals, the relation of the oxidative stress to aging and human diseases including cancer and neurological disorders, and the development of new therapeutic approaches to modulate oxidative stress. The current state-of-the-art methodologies including the development of sensors and biosensors for the detection of ROS/RNS and of biomarkers of oxidative stress are also discussed. The book is organized in three overlapping parts, starting with general considerations of the oxidative stress, homeostasis pathways, and ROS mechanisms, followed by chapters discussing the involvement of ROS in particular diseases and concluding with analytical aspects of oxidative stress monitoring. The book provides a solid background on oxidative stress and ROS/RNS generation for novice learners while also offering scientists and practitioners already involved in this field a wealth of information covering the most recent developments in the study of oxidative stress, the role of radical species, novel antioxidant therapies, and methods for assessing free radicals and oxidative stress.