Neural Network Solutions for Trading in Financial Markets


Book Description

Offers an alternative technique in forecasting to the traditional techniques used in trading and dealing. The book explains the shortcomings of traditional techniques and shows how neural networks overcome many of the disadvantages of these traditional systems.




Neural Networks in Finance


Book Description

This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website




Artificial Neural Networks in Finance and Manufacturing


Book Description

"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.




Machine Learning for Algorithmic Trading


Book Description

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.




The Advertised Mind


Book Description

Du Plessis draws on information about the working of the human brain from psychologists, neurologists, and artificial intelligence specialists to suggest why "ad-liking" is such an important factor in advertisement and how it predisposes consumers to buy the brand that is being advertised.




Fractal Approaches for Modeling Financial Assets and Predicting Crises


Book Description

In an ever-changing economy, market specialists strive to find new ways to evaluate the risks and potential reward of economic ventures. They start by assessing the importance of human reaction during the economic planning process and put together systems to measure financial markets and their longevity. Fractal Approaches for Modeling Financial Assets and Predicting Crises is a critical scholarly resource that examines the fractal structure and long-term memory of the financial markets in order to predict prices of financial assets and financial crises. Featuring coverage on a broad range of topics, such as computational process models, chaos theory, and game theory, this book is geared towards academicians, researchers, and students seeking current research on pricing and predicting financial crises.




Emerging Intelligent Computing Technology and Applications


Book Description

The International Conference on Intelligent Computing (ICIC) was formed to provide an annual forum dedicated to the emerging and challenging topics in artificial intelligence, machine learning, bioinformatics, and computational biology, etc. It aims to bring - gether researchers and practitioners from both academia and industry to share ideas, problems, and solutions related to the multifaceted aspects of intelligent computing. ICIC 2009, held in Ulsan, Korea, September 16–19, 2009, constituted the 5th - ternational Conference on Intelligent Computing. It built upon the success of ICIC 2008, ICIC 2007, ICIC 2006, and ICIC 2005 held in Shanghai, Qingdao, Kunming, and Hefei, China, 2008, 2007, 2006, and 2005, respectively. This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the p- ture of contemporary intelligent computing techniques as an integral concept that hi- lights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was “Emerging Intelligent Computing Technology and Applications.” Papers focusing on this theme were solicited, addressing theories, methodologies, and applications in science and technology.




Machine Learning and Data Sciences for Financial Markets


Book Description

Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.




Computational Science — ICCS 2002


Book Description

Computational Science is the scientific discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems - such as biology environ mental and geo-sciences, physics, and chemistry - and synthetic systems such as electronics and financial and economic systems. The discipline is a bridge bet ween 'classical' computer science - logic, complexity, architecture, algorithm- mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this field. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): 'There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential of computational science'. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous sti mulus from the various international programs on advanced computing, e.g.




Neural Networks and the Financial Markets


Book Description

This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.