Neural Networks and Micromechanics


Book Description

Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed.




Neural Networks and Micromechanics


Book Description

Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed.




Advances in Neural Networks - ISNN 2004


Book Description

This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.




Transit Development in Rock Mechanics


Book Description

Transit Development in Rock Mechanics—Recognition, Thinking and Innovation contains 150 papers presented at the 3rd ISRM International Young Scholars’ Symposium on Rock Mechanics (8-10 November 2014, Xi’an, China). The volume focusses on the transitional development in rock mechanics research from surface to underground mining and from shallow to a deep rock excavations, and on the transition of knowledge, thinking and innovation from pioneers to the young generation. The contributions cover a wide range of topics: Field investigation and measurements Physical and mechanical properties of rocks Analysis and design methods for rock engineering Numerical and physical modeling Multi-fields coupling analysis methods Rock slope, tunnel and foundation engineering Monitoring and control of rock pressure in underground engineering Dynamic rock mechanics and blasting Support and reinforcement techniques for geotechnical engineering Prediction and control of artificial hazards with excavation in rock Transit Development in Rock Mechanics—Recognition, Thinking and Innovation will be invaluable to engineers and academics interested or involved in rock mechanics, geotechnical engieering, mine engineering and underground engineering. The Symposium was organized by the Commission on Education of International Society for Rock Mechanics and Xi’an University of Science and Technology, and sponsored by the International Society for Rock Mechanics (ISRM) and the Chinese Society for Rock Mechanics and Engineering (CSRME).




Intelligent Automation in Renewable Energy


Book Description

After an introduction to renewable energy technologies, the authors present computational intelligence techniques for optimizing the manufacture of related technologies, including solar concentrators. In particular the authors present new applications for their neural classifiers for image and pattern recognition. The book will be of interest to researchers in computational intelligence, in particular in the domain of neural networks, and engineers engaged with renewable energy technologies.




Applied Micromechanics of Complex Microstructures


Book Description

Applied Micromechanics of Complex Microstructures explains the fundamental concepts of continuum modeling of various complicated microstructures, covering nanocomposites, multiphase composites, biomaterials, biological materials, and more. The authors outline the calculation of effective mechanical and thermal properties, allowing readers to understand the step-by-step modeling and homogenization of complicated microstructures, and the book also features a chapter on microstructure hull and material design. Modeling of complex samples with nonlinear properties such as neural tissue, bone microstructure, and liver tissue is also explained and analyzed. Explains the core concepts of continuum modeling of different complex microstructures, including nanocomposites, multiphase composites, biomaterials, and biological materials Provides detailed calculations of eff ective mechanical and thermal properties allowing the audience to understand the modeling and homogenization of complex microstructures Covers several methods for designing the microstructure of heterogeneous materials







Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures


Book Description

Due to the increased use of composite materials in aerospace, energy, automobile, and civil infrastructure applications, concern over composite material failures has grown, creating a need for smart composite structures that are able to self-diagnose and self-heal. Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures provides valuable insight into cutting-edge advances in SHM, smart materials, and smart structures. Comprised of chapters authored by leading researchers in their respective fields, this edited book showcases exciting developments in general embedded sensor technologies, general sensor technologies, sensor response interrogation and data communication, damage matrix formulation, damage mechanics and analysis, smart materials and structures, and SHM in aerospace applications. Each chapter makes a significant contribution to the prevention of structural failures by describing methods that increase safety and reduce maintenance costs in a variety of SHM applications.




Smart Composites


Book Description

Smart Composites: Mechanics and Design addresses the current progress in the mechanics and design of smart composites and multifunctional structures. Divided into three parts, it covers characterization of properties, analyses, and design of various advanced composite material systems with an emphasis on the coupled mechanical and non-mechanical behaviors. Part one includes analyses of smart materials related to electrically conductive, magnetostrictive nanocomposites and design of active fiber composites. These discussions include several techniques and challenges in manufacturing smart composites and characterizing coupled properties, as well as the analyses of composite structures at various length and time scales undergoing coupled mechanical and non-mechanical stimuli considering elastic, viscoelastic (and/or viscoplastic), fatigue, and damage behaviors. Part two is dedicated to a higher-scale analysis of smart structures with topics such as piezoelectrically actuated bistable composites, wing morphing design using macrofiber composites, and multifunctional layered composite beams. The analytical expressions for characterization of the smart structures are presented with an attention to practical application. Finally, part three presents recent advances regarding sensing and structural health monitoring with a focus on how the sensing abilities can be integrated within the material and provide continuous sensing, recognizing that multifunctional materials can be designed to both improve and enhance the health-monitoring capabilities and also enable effective nondestructive evaluation. Smart Composites: Mechanics and Design is an essential text for those interested in materials that not only possess the classical properties of stiffness and strength, but also act as actuators under a variety of external stimuli, provide passive and active response to enable structural health monitoring, facilitate advanced nondestructive testing strategies, and enable shape-changing and morphing structures.




Advanced Micro- and Nano-manufacturing Technologies


Book Description

This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.