Neuro-fuzzy and Soft Computing


Book Description

Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.




Neuro-Fuzzy Pattern Recognition


Book Description

The neuro-fuzzy approach to pattern recognition-a unique overview Recent years have seen a surge of interest in neuro-fuzzy computing, which combines fuzzy logic, neural networks, and soft computing techniques. This book focuses on the application of this new tool to the rapidly evolving area of pattern recognition. Written by two leaders in neural networks and soft computing research, this landmark work presents a unified, comprehensive treatment of the state of the art in the field. The authors consolidate a wealth of information previously cattered in disparate articles, journals, and edited volumes, explaining both the theory of neuro-fuzzy computing and the latest methodologies for performing different pattern recognition tasks in the neuro-fuzzy network-classification, feature evaluation, rule generation, knowledge extraction, and hybridization. Special emphasis is given to the integration of neuro-fuzzy methods with rough sets and genetic algorithms (GAs) to ensure more efficient recognition systems. Clear, concise, and fully referenced, Neuro-Fuzzy Pattern Recognition features extensive examples and highlights key applications in speech, machine learning, medicine, and forensic science. It is an extremely useful resource for scientists and engineers in laboratories and industry as well as for anyone seeking up-to-date information on the advantages of neuro-fuzzy pattern recognition in new computer technologies.




Neuro-Fuzzy Architectures and Hybrid Learning


Book Description

The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth.




Fuzzy and Neuro-Fuzzy Intelligent Systems


Book Description

Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.




Soft Computing And Its Applications


Book Description

The concept of soft computing is still in its initial stages of crystallization. Presently available books on soft computing are merely collections of chapters or articles about different aspects of the field. This book is the first to provide a systematic account of the major concepts and methodologies of soft computing, presenting a unified framework that makes the subject more accessible to students and practitioners. Particularly worthy of note is the inclusion of a wealth of information about neuro-fuzzy, neuro-genetic, fuzzy-genetic and neuro-fuzzy-genetic systems, with many illuminating applications and examples.




Introduction to Neuro-Fuzzy Systems


Book Description

This book contains introductory material to neuro-fuzzy systems. Its main purpose is to explain the information processing in mostly-used fuzzy inference systems, neural networks and neuro-fuzzy systems. More than 180 figures and a large number of (numerical) exercises (with solutions) have been inserted to explain the principles of fuzzy, neural and neuro-fuzzy systems. Also the mathematics applied in the models is carefully explained, and in many cases exact computational formulas have been derived for the rules in error correction learning procedures. Numerous models treated in the book will help the reader to design his own neuro-fuzzy system for his specific (managerial, industrial, financial) problem. The book can serve as a textbook for students in computer and management sciences who are interested in adaptive technologies.




Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications


Book Description

Soft computing is a consortium of computing methodologies that provide a foundation for the conception, design, and deployment of intelligent systems and aims to formalize the human ability to make rational decisions in an environment of uncertainty and imprecision. This book is based on a NATO Advanced Study Institute held in 1996 on soft computing and its applications. The distinguished contributors consider the principal constituents of soft computing, namely fuzzy logic, neurocomputing, genetic computing, and probabilistic reasoning, the relations between them, and their fusion in industrial applications. Two areas emphasized in the book are how to achieve a synergistic combination of the main constituents of soft computing and how the combination can be used to achieve a high Machine Intelligence Quotient.




Recent Advances in Intelligent Paradigms and Applications


Book Description

Digital systems that bring together the computing capacity for processing large bodies of information with the human cognitive capability are called intelligent systems. Building these systems has become one of the great goals of modem technology. This goal has both intellectual and economic incentives. The need for such intelligent systems has become more intense in the face of the global connectivity of the internet. There has become an almost insatiable requirement for instantaneous information and decision brought about by this confluence of computing and communication. This requirement can only be satisfied by the construction of innovative intelligent systems. A second and perhaps an even more significant development is the great advances being made in genetics and related areas of biotechnology. Future developments in biotechnology may open the possibility for the development of a true human-silicon interaction at the micro level, neural and cellular, bringing about a need for "intelligent" systems. What is needed to further the development of intelligent systems are tools to enable the representation of human cognition in a manner that allows formal manipulation. The idea of developing such an algebra goes back to Leibniz in the 17th century with his dream of a calculus ratiocinator. It wasn't until two hundred years later beginning with the work of Boole, Cantor and Frege that a formal mathematical logic for modeling human reasoning was developed. The introduction of the modem digital computer during the Second World War by von Neumann and others was a culmination of this intellectual trend.




Fuzzy Logic And Soft Computing


Book Description

Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.




Soft Computing in Case Based Reasoning


Book Description

This text demonstrates how various soft computing tools can be applied to design and develop methodologies and systems with case based reasoning, that is, for real-life decision-making or recognition problems. Comprising contributions from experts, it introduces the basic concepts and theories, and includes many reports on real-life applications. This book is of interest to graduate students and researchers in computer science, electrical engineering and information technology, as well as researchers and practitioners from the fields of systems design, pattern recognition and data mining.