Neuroinflammation


Book Description

Inflammation is a central mechanism in many neurological diseases, including stroke, multiple sclerosis, and brain trauma as well as meningitis and contributes to the generation of pain. We are now beginning to understand the impact of the immune system on different nervous system functions and diseases, ranging from damage through tolerance to modulation and repair.This book discusses some of the more common neuro-inflammatory diseases. Topics covered include multiple sclerosis, optic neuritis and Susac syndrome. Comprehensive review of the latest developments in neuroinflammation Includes contributions from leading authorities




Neuroinflammation and Schizophrenia


Book Description

This book provides a comprehensive summary of the cutting edge scientific evidence regarding the role of immune system in the pathogenesis and treatment of schizophrenia and related psychotic disorders. It illustrates the role of inflammation and immunity in schizophrenia drawing on both basic science and clinical research. The chapters provide up-to-date summaries of immunological risk factors for schizophrenia and related psychotic disorders, and underlying mechanisms as informed by neuroimaging, genetic, clinical and animal experimental studies. In addition, the book will illuminate the scope for immunological treatment for schizophrenia.




Mechanisms of Neuroinflammation


Book Description

"Mechanisms of Neuroinflammation" book explains how the neuronal cells become swollen at the moment of the blood-brain barrier disruption and how they lose their immunological isolation. A cascade of cytokines and immune cells from the bloodstream enters the nervous system, inflaming neurons and activating the glia. This produces a neuroinflammatory process that can generate different neurodegenerative diseases. Better understanding of mechanisms that are activated at the time when the damage to the brain occurs could lead to the development of suitable therapies that revert the neuronal inflammation and thus prevent further damage to the nervous system.




Neuroinflammation and Behaviour


Book Description

The brain and immune system are involved in an intricate network of bidirectional communication. This relationship is vital for optimal physiological and psychological development and functioning but can also result in unwanted outcomes. In particular, this interaction plays an important role in cognition, mood and behaviour. Neuroinflammation is known to contribute to neurological and affective disorders including impaired learning and memory, depressive, anxiety and schizoaffective symptoms, as well as pain. The development of these conditions often occurs on the backdrop of pre-existing physical illnesses which give rise to increased activation of the immune system, such as cancer, obesity, infection and autoimmune disorders. Similarly, psychological states can alter regulation of the immune system. This has been most extensively studied in the context of stress and immune function. Understanding the underlying mechanisms that lead to the onset of inflammation-induced neuropathology and stress-induced immune suppression will contribute to the development of novel and effective treatment strategies for both the disease and its neurological side effects. In this research topic we explored the relationship between the immune system and the brain throughout life. We include both original research and review papers from animal, clinical and molecular perspectives.







Neuroinflammation


Book Description

In this thoroughly updated and revised edition of his much praised book, Paul L. Wood and a panel of leading researchers capture these new developments in a masterful synthesis of what is known today about the inflammatory mediators and cells involved in neurodegenerative diseases. This second edition contains extensive updates on the mediators produced by microglia and their role in neuroinflammatory-induced neuronal lysis. There is also increased coverage of the animal models used in the study of neuroinflammatory mechanisms, of the new imaging methods that allow the noninvasive evaluation of microglial activation in human neurodegernerative disorders, and of the role of neuroinflammation in amyloid-dependent neuronal lysis.




Animal Models of Acute Neurological Injuries


Book Description

Despite numerous recent studies and exciting discoveries in the field, only limited treatment is available today for the victims of acute neurological injuries. Animal Models of Acute Neurological Injuries provides a standardized methodology manual designed to eliminate the inconsistent preparations and variability that currently jeopardizes advances in the field. Contributed by top experts and many original developers of the models, each chapter contains a step-by-step, proven procedure and visual aids covering the most commonly used animal models of neurological injury in order to highlight the practical applications of animal models rather than the theoretical issues. This intensive volume presents its readily reproducible protocols with great clarity and consistency to best aid neuroscientists and neurobiologists in laboratory testing and experimentation. Comprehensive and cutting-edge, Animal Models of Acute Neurological Injuries is an ideal guide for scientists and researchers who wish to pursue this vital course of study with the proficiency and precision that the field requires.




Mechanisms of Neuroinflammation and Inflammatory Neurodegeneration in Acute Brain Injury


Book Description

Mechanisms of brain-immune interactions became a cutting-edge topic in systemic neurosciences over the past years. Acute lesions of the brain parenchyma, particularly, induce a profound and highly complex neuroinflammatory reaction with similar mechanistic properties between differing disease paradigms like ischemic stroke, intracerebral hemorrhage (ICH) and traumatic brain injury (TBI). Resident microglial cells sense tissue damage and initiate inflammation, activation of the endothelial brain-immune interface promotes recruitment of systemic immune cells to the brain and systemic humoral immune mediators (e.g. complements and cytokines) enter the brain through the damaged blood-brain barrier. These cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute substantially to secondary brain damage and neurodegeneration. Diverse inflammatory cascades such as pro-inflammatory cytokine secretion of invading leukocytes and direct cell-cell-contact cytotoxicity between lymphocytes and neurons have been demonstrated to mediate the inflammatory ‘collateral damage’ in models of acute brain injury. Besides mediating neuronal cell loss and degeneration, secondary inflammatory mechanisms also contribute to functional modulation of neurons and the impact of post-lesional neuroinflammation can even be detected on the behavioral level. The contribution of several specific immune cell subpopulations to the complex orchestration of secondary neuroinflammation has been revealed just recently. However, the differential vulnerability of specific neuronal cell types and the molecular mechanisms of inflammatory neurodegeneration are still elusive. Furthermore, we are only on the verge of characterizing the control of long-term recovery and neuronal plasticity after brain damage by inflammatory pathways. Yet, a more detailed but also comprehensive understanding of the multifaceted interaction of these two supersystems is of direct translational relevance. Immunotherapeutic strategies currently shift to the center of translational research in acute CNS lesion since all clinical trials investigating direct neuroprotective therapies failed. To advance our knowledge on brain-immune communications after brain damage an interdisciplinary approach covered by cellular neuroscience as well as neuroimmunology, brain imaging and behavioral sciences is crucial to thoroughly depict the intricate mechanisms.




Translational Research in Traumatic Brain Injury


Book Description

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme




Neuroinflammation


Book Description

Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.