Neutron Scattering From Hydrogen In Materials - Proceedings Of The Second Summer School On Neutron Scattering


Book Description

This volume provides a topical survey of the static and dynamic properties of hydrogen in both metallic and inorganic materials studied by neutron scattering which has been the key technique in this field for a long time. The static aspects deal with the localization of hydrogen in a variety of materials including the technically important metal hydrides, zeolites, and superionic conductors. The dynamic aspects concentrate on local modes, hydrogen bonds, tunneling, and diffusion. All these topics are thoroughly introduced, methodically discussed, and highlighted with recent experimental results by acknowledged experts.




Vibrational Spectroscopy With Neutrons - With Applications In Chemistry, Biology, Materials Science And Catalysis


Book Description

Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.




Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials


Book Description

This book provides a comprehensive overview of the main nuclear characterization techniques used to study hydrogen absorption and desorption in materials. The various techniques (neutron scattering, nuclear magnetic resonance, ion-beams, positron annihilation spectroscopy) are explained in detail, and a variety of examples of recent research projects are given to show the unique advantage of these techniques to study hydrogen in materials. Most of these nuclear techniques require very specialized instrumentation, and there are only a handful of these instruments available worldwide. Therefore, the aim of this book is to reach out to a readership with a very diverse background in the physical sciences and engineering and a broad range of hydrogen-related research interests. The same technique can be used by researchers interested in the improvement of the performance of hydrogen storage materials and by those focused on hydrogen ingress causing embrittlement of metals. The emphasis of this book is to provide tutorial material on how to use nuclear characterization techniques for the investigation of hydrogen in materials – information that cannot readily be found in conference and regular research papers. Provides a comprehensive overview of nuclear techniques used for hydrogen-related research Explains all nuclear techniques in detail for the non-expert Covers the whole range of hydrogen-related research Features chapters written by world-renowned experts in nuclear technique and hydrogen-related research




Single Crystal Neutron Diffraction from Molecular Materials


Book Description

This important book presents a comprehensive account of the techniques & applications of single crystal neutron diffraction in the area of chemical crystallography & molecular structure. Beginning with a brief description of the general principles & the reasons for choosing the technique - the "why" - the book covers the methods for both the production of neutrons & the measurement of their scattering by molecular crystals - the "how" - followed by a detailed survey of past, present & future applications - the "what". The coverage of both steady state & pulsed neutron sources & instrumentation is extensive, while the survey of applications is the most comprehensive yet undertaken. The book endeavours to show why the technique is an essential method for studying areas as diverse as hydrogen bonding & weak interactions, organometallics, supramolecular chemistry & crystal engineering, metal hydrides, charge density & pharmaceuticals. It is an ideal reference source for the research worker interested in using neutron diffraction to study the structure of molecules. Contents: Crystallography & the Importance of Structural Information; Neutron Scattering; Neutron Diffractometers; Review of Applications I: The Accurate Location of Atoms; Review of Applications II: Hydrogen Bonding & Other Intermolecular Interactions; Review of Applications III: Probing Vibrations & Disorder; Impact on Material Properties & Design; The Future: New Instruments, New Sources, New Techniques. Readership: Students & researchers involved in structural science, especially chemical crystallography.




Elements of Slow-Neutron Scattering


Book Description

This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.




Solid-State Hydrogen Storage


Book Description

Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry is a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage. Assesses hydrogen fuel cells as a major alternative energy source Discusses hydrogen storage technologies and solid-state hydrogen storage system design Explores the analysis of hydrogen interactions including reliably measuring hydrogen uptake in storage materials




Neutron Scattering in Biology


Book Description

The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.




Hydrogen as a Future Energy Carrier


Book Description

This book fills the gap for concise but comprehensive literature on this interdisciplinary topic, involving chemical, physical, biological and engineering challenges. It provides broad coverage of the most important fields of modern hydrogen technology: hydrogen properties, production, storage, conversion to power, and applications in materials science. In so doing, the book covers all the pertinent materials classes: metal hydrides, inorganic porous solids, organic materials, and nanotubes. The authors present the entire view from fundamental research to viable devices and systems, including the latest scientific results and discoveries, practical approaches to design and engineering, as well as functioning prototypes and advanced systems.




Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.




Dynamics of Soft Matter


Book Description

Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or microfluidics. Emphasizing the complementarities of scattering techniques with other spectroscopic ones, this volume also highlights the potential gain in combining techniques such as rheology, NMR, light scattering, dielectric spectroscopy, as well as synchrotron radiation experiments. Key areas covered include polymer science, biological materials, complex fluids and surface science.