Neutrosophic Triplet Non-Associative Semihypergroups with Application


Book Description

In this paper, we extended the idea of a neutrosophic triplet set to non-associative semihypergroups and define neutrosophic triplet LA-semihypergroup.We discuss some basic results and properties. At the end, we provide an application of the proposed structure in Football.




Neutrosophic Triplet Non-Associative Semihypergroups with Application


Book Description

In this paper, we extended the idea of a neutrosophic triplet set to non-associative semihypergroups and define neutrosophic triplet LA-semihypergroup.We discuss some basic results and properties. At the end, we provide an application of the proposed structure in Football.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume II


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.




On Neutrosophic Extended Triplet LA-hypergroups and Strong Pure LA-semihypergroups


Book Description

We introduce the notions of neutrosophic extended triplet LA-semihypergroup, neutrosophic extended triplet LA-hypergroup, which can reflect some symmetry of hyperoperation and discuss the relationships among them and regular LA-semihypergroups, LA-hypergroups, regular LA-hypergroups. In particular, we introduce the notion of strong pure neutrosophic extended triplet LA-semihypergroup, get some special properties of it and prove the construction theorem about it under the condition of asymmetry. The examples in this paper are all from Python programs.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.




Neutrosophic Cubic Einstein Hybrid Geometric Aggregation Operators with Application in Prioritization Using Multiple Attribute Decision-Making Method


Book Description

Viable collection is one of the imperative instruments of decision-making hypothesis. Collection operators are not simply the operators that normalize the value; theyrepresent progressively broad values that can underline the entire information. Geometric weighted operators weight the values only, andthe ordered weighted geometric operators weight the ordering position only.Both of these operators tend to the value that relates to the biggest weight segment. Hybrid collection operators beat these impediments of weighted total and request total operators.




New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications


Book Description

This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.




Generalized Neutrosophic Extended Triplet Group


Book Description

Neutrosophic extended triplet group is a new algebra structure and is different from the classical group. In this paper, the notion of generalized neutrosophic extended triplet group is proposed and some properties are discussed.




Further Theory of Neutrosophic Triplet Topology and Applications


Book Description

In this paper we study and develop the Neutrosophic Triplet Topology (NTT) that was recently introduced by Sahin et al. Like classical topology, the NTT tells how the elements of a set relate spatially to each other in a more comprehensive way using the idea of Neutrosophic Triplet Sets.