New Challenges for Cancer Systems Biomedicine


Book Description

The future of oncology seems to lie in Molecular Medicine (MM). MM is a new science based on three pillars. Two of them are evident in its very name and are well known: medical science and molecular biology. However, there is a general unawareness that MM is firmly based on a third, and equally important, pillar: Systems Biomedicine. Currently, this term denotes multilevel, hierarchical models integrating key factors at the molecular, cellular, tissue, through phenotype levels, analyzed to reveal the global behavior of the biological process under consideration. It becomes increasingly evident that the tools to construct such complex models include, not only bioinformatics and modern applied statistics, as is unanimously agreed, but also other interdisciplinary fields of science, notably, Mathematical Oncology, Systems Biology and Theoretical Biophysics.




Cancer Care for the Whole Patient


Book Description

Cancer care today often provides state-of-the-science biomedical treatment, but fails to address the psychological and social (psychosocial) problems associated with the illness. This failure can compromise the effectiveness of health care and thereby adversely affect the health of cancer patients. Psychological and social problems created or exacerbated by cancer-including depression and other emotional problems; lack of information or skills needed to manage the illness; lack of transportation or other resources; and disruptions in work, school, and family life-cause additional suffering, weaken adherence to prescribed treatments, and threaten patients' return to health. Today, it is not possible to deliver high-quality cancer care without using existing approaches, tools, and resources to address patients' psychosocial health needs. All patients with cancer and their families should expect and receive cancer care that ensures the provision of appropriate psychosocial health services. Cancer Care for the Whole Patient recommends actions that oncology providers, health policy makers, educators, health insurers, health planners, researchers and research sponsors, and consumer advocates should undertake to ensure that this standard is met.




Mathematical Oncology 2013


Book Description

With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.




Toward Precision Medicine


Book Description

Motivated by the explosion of molecular data on humans-particularly data associated with individual patients-and the sense that there are large, as-yet-untapped opportunities to use this data to improve health outcomes, Toward Precision Medicine explores the feasibility and need for "a new taxonomy of human disease based on molecular biology" and develops a potential framework for creating one. The book says that a new data network that integrates emerging research on the molecular makeup of diseases with clinical data on individual patients could drive the development of a more accurate classification of diseases and ultimately enhance diagnosis and treatment. The "new taxonomy" that emerges would define diseases by their underlying molecular causes and other factors in addition to their traditional physical signs and symptoms. The book adds that the new data network could also improve biomedical research by enabling scientists to access patients' information during treatment while still protecting their rights. This would allow the marriage of molecular research and clinical data at the point of care, as opposed to research information continuing to reside primarily in academia. Toward Precision Medicine notes that moving toward individualized medicine requires that researchers and health care providers have access to very large sets of health- and disease-related data linked to individual patients. These data are also critical for developing the information commons, the knowledge network of disease, and ultimately the new taxonomy.




Mathematics and Computer Science, Volume 2


Book Description

MATHEMATICS AND COMPUTER SCIENCE This second volume in a new multi-volume set builds on the basic concepts and fundamentals laid out in the previous volume, presenting the reader with more advanced and cutting-edge topics being developed in this exciting field. This second volume in a new series from Wiley-Scrivener is the first of its kind to present scientific and technological innovations by leading academicians, eminent researchers, and experts around the world in the areas of mathematical sciences and computing. Building on what was presented in volume one, the chapters focus on more advanced topics in computer science, mathematics, and where the two intersect to create value for end users through practical applications. The chapters herein cover scientific advancements across a diversified spectrum that includes differential as well as integral equations with applications, computational fluid dynamics, nanofluids, network theory and optimization, control theory, machine learning and artificial intelligence, big data analytics, Internet of Things, cryptography, fuzzy automata, statistics, and many more. Readers of this book will get access to diverse ideas and innovations in the field of computing together with its growing interactions in various fields of mathematics. Whether for the engineer, scientist, student, academic, or other industry professional, this is a must-have for any library.




Tumor Microenvironment


Book Description

This volume covers the topics presented at the 3rd International Conference on Tumor Microenvironment and Cellular Stress by an international community of researchers. The conference brings together scientists to discuss different cellular and animal models of tumor microenvironment study and identify common pathways that are candidates for therapeutic intervention; stimulate collaboration between groups that are more focused on elucidation of biochemical aspects of stress biology (e.g., HIF regulation) and groups that study the pathophysiological aspects of stress pathways or engaged in drug discovery; and critically evaluate novel targets for imaging or therapeutic intervention that would be of use to the tumor microenvironment community and pharmaceutical industry.




Hemomath


Book Description

This book illustrates applications of mathematics to various processes (physiological or artificial) involving flowing blood, including hemorheology, microcirculation, coagulation, kidney filtration and dialysis, offering a historical overview of each topic. Mathematical models are used to simulate processes normally occurring in flowing blood and to predict the effects of dysfunctions (e.g. bleeding disorders, renal failure), as well as the effects of therapies with an eye to improving treatments. Most of the models have a completely new approach that makes patient-specific simulations possible. The book is mainly intended for mathematicians interested in medical applications, but it is also useful for clinicians such as hematologists, nephrologists, cardio-surgeons, and bioengineers. Some parts require no specific knowledge of mathematics. The book is a valuable addition to mathematics, medical, biology, and bioengineering libraries.




Mathematical Models of Tumor-Immune System Dynamics


Book Description

This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.




Hypoxia and Cancer


Book Description

​​​The imbalance between rapidly proliferating tumor cells and inadequate and inefficient tumor vasculature leads to a decrease in oxygen levels (hypoxia and/or anoxia) in tumor tissues. Intra-tumor hypoxia profoundly affects the biological behavior of cancer cells, which become resistant to conventional therapies and acquire a more invasive and metastatic phenotype. Hypoxia is a hallmark of the malignant phenotype and a key feature of the tumor microenvironment. Hypoxia Inducible Factor 1 (HIF-1) is a master regulator of the transcriptional response to oxygen deprivation. HIF triggers the expression of genes whose products induce angiogenesis, decrease oxygen consumption, switch metabolism to glycolysis, maintain a stem cell phenotype and select for more invasive and metastatic cells. Therapeutic approaches targeting HIF, directly or downstream mediators of its transcriptional activity, are being developed. Intra-tumor hypoxia is a topic has been gaining scientific interest over the last few years for its wide involvement in many physiological and pathological processes. This volume will cover the latest research and translational aspects associated with intra-tumor hypoxia, along with opportunities for drug development offered by this unique feature of the tumor microenvironment. The ongoing efforts to translate our understanding of the biology underlying intra-tumor hypoxia in viable therapeutic options face many challenges, but this book will provide an opportunity for an in-depth analysis of the fundamental mechanisms implicated in the adaption to low oxygen levels and will scrutinize the potential for opportunities that are being pursued in both research and the drug development industry.




Large-Scale Biomedical Science


Book Description

The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.