New Developments in Quantum Cosmology Research


Book Description

Horizons in World Physics, Volume 247 - New Developments in Quantum Cosmology Research




Experimental Search for Quantum Gravity


Book Description

This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between general relativity, black holes and Planck stars. Finally, the return on investment in quantum-gravitation research is illuminated. The book is intended for graduate students and researchers entering the field.




New Developments in Quantum Optics Research


Book Description

This book focuses on new developments in quantum optics research. Chapters include computer-aided design (CAD) flow for large-scale quantum circuits; the effects of cooperation between the Stokes and anti-Stokes modes in Raman scattering processes and an analysis of the different properties, such as entanglement and quantum degree of polarization for two-mode states of the radiation field which is of great importance for a deeper understanding of the correlations that occur in the system.




Quantum Cosmology


Book Description

Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.




Helgoland


Book Description

Named a Best Book of 2021 by the Financial Times and a Best Science Book of 2021 by The Guardian “Rovelli is a genius and an amazing communicator… This is the place where science comes to life.” ―Neil Gaiman “One of the warmest, most elegant and most lucid interpreters to the laity of the dazzling enigmas of his discipline...[a] momentous book” ―John Banville, The Wall Street Journal A startling new look at quantum theory, from the New York Times bestselling author of Seven Brief Lessons on Physics, The Order of Time, and Anaximander. One of the world's most renowned theoretical physicists, Carlo Rovelli has entranced millions of readers with his singular perspective on the cosmos. In Helgoland, he examines the enduring enigma of quantum theory. The quantum world Rovelli describes is as beautiful as it is unnerving. Helgoland is a treeless island in the North Sea where the twenty-three-year-old Werner Heisenberg made the crucial breakthrough for the creation of quantum mechanics, setting off a century of scientific revolution. Full of alarming ideas (ghost waves, distant objects that seem to be magically connected, cats that appear both dead and alive), quantum physics has led to countless discoveries and technological advancements. Today our understanding of the world is based on this theory, yet it is still profoundly mysterious. As scientists and philosophers continue to fiercely debate the meaning of the theory, Rovelli argues that its most unsettling contradictions can be explained by seeing the world as fundamentally made of relationships rather than substances. We and everything around us exist only in our interactions with one another. This bold idea suggests new directions for thinking about the structure of reality and even the nature of consciousness. Rovelli makes learning about quantum mechanics an almost psychedelic experience. Shifting our perspective once again, he takes us on a riveting journey through the universe so we can better comprehend our place in it.







Quantum Gravity and Quantum Cosmology


Book Description

Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.




Foundations of Quantum Cosmology


Book Description

This is the first book to lay the physical foundations of quantum cosmology, complete with an introduction to space-time physics, quantum theory, and the main approaches to quantum gravity. It is an essential guide for researchers in quantum gravity and astrophysicists interested in fundamental aspects of cosmology.




Thirteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics And Relativistic Field Theories - Proceedings Of The Mg13 Meeting On General Relativity (In 3 Volumes)


Book Description

The Marcel Grossmann Meetings seek to further the development of the foundations and applications of Einstein's general relativity by promoting theoretical understanding in the relevant fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. The meetings discuss recent developments in classical and quantum aspects of gravity, and in cosmology and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, having the main objective of gathering scientists from diverse backgrounds for deepening our understanding of spacetime structure and reviewing the current state of the art in the theory, observations and experiments pertinent to relativistic gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity, branes and strings, to more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG13 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 33 morning plenary talks during 6 days, and 75 parallel sessions over 4 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string/brane theories, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star and pulsar astrophysics. Volumes B and C include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, quasors, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, and cosmic rays and the history of general relativity.




Tenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical & Experimental General Relativity, Gravitation, & Relativistic Field Theories (In 3 Vols) - Procs Of The Mgio Meeting Held At Brazilian Ctr For Res In Phys (Cbpf)


Book Description

The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling.This Tenth Marcel Grossmann Meeting was organized by an international committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg and backed by an international coordinating committee of about 135 members from scientific institutions representing 54 countries. The scientific program included 29 morning plenary talks during 6 days, and 57 parallel sessions over five afternoons, during which roughly 500 papers were presented.These three volumes of the proceedings of MG10 give a broad view of all aspects of gravitation, from mathematical issues to recent observations and experiments.