New Field Testing Procedure For Measuring Residual Stress in Plain Concrete Pavements and Structures


Book Description

Residual stresses in rigid pavements diminish a pavement's ability to sustain its designed load. When capacity is reduced by residual stress, a pavement is vulnerable to premature failure necessitating costly repairs or replacement. A test method for measuring residual stresses has already been developed for steel wherein a small hole is drilled adjacent to an affixed surface strain gage (ASTM E837 2008). Based on the geometry of the test procedure, the change in strain reading is correlated to a residual stress in the steel material. While rigid pavements are as detrimentally affected by the formation of residual stresses as steel, no similar testing method exists for concrete. Recent research conducted by the Federal Aviation Administration's (FAA0́9s) National Airport Pavement Test Facility (NAPTF) investigated the strain relaxation of cantilevered concrete beams when a blind-depth hole using core drilling is made in the vicinity of an affixed strain gage. Initial findings indicated that the testing procedure partially quantified the residual stresses. Research at the University of Illinois at Urbana-Champaign (UIUC) improved the testing procedure using cantilevered concrete beams by instead sawing a linear notch near one end of the strain gage and sawing two linear notches near both ends of the strain gage. Results for the doubly notched concrete beam proved to be a much improved method for measuring residual stresses when compared to the core-drilled test procedure. The current project further improved test procedures and completed additional lab and field testing on in-situ plain concrete pavements. The test procedure was altered in order to observe the strain relaxation in three directions while four saw cuts are made surrounding the strain rosette. When this area of concrete had been appropriately isolated from load-induced stresses, simple calculations determine the residual stress of the material. Three dimensional Finite Element Model (FEM) analyses of these tests further corroborates the findings suggesting that the residual stresses in plain concrete pavements can be reliably measured.




Field Test Method for Residual Stress in Plain Concrete Pavements and Structures


Book Description

Residual stresses form in concrete structures and rigid pavements as a result of differential shrinkage, loss of subgrade support, and physical restraint by the superstructure. These stresses diminish a concrete member's capacity to carry its design load, making the structure vulnerable to premature cracking and failure. Few methods for quantifying the residual stress in concrete exist, although several methods have been developed for measuring material stresses in metals and rocks. Here, a new field test method for concrete pavements and structures, inspired by the ASTM E837 method for measuring residual stress in steel, is presented. The test is performed by installing strain gages on the surface of a concrete pavement or structure and then saw-cutting around the gages to isolate the gages from the bulk concrete material. The difference between the strain reading before and after the saw-cuts is used to compute the stress present at the surface of the concrete material. The method was developed and validated in laboratory experiments, and finite element modeling was conducted to enhance understanding of the three-dimensional strain distribution around saw-cut notches in materials with residual stress. Full-scale testing on plain concrete pavements demonstrated the method's potential as a field test method.




7th RILEM International Conference on Cracking in Pavements


Book Description

In the recent past, new materials, laboratory and in-situ testing methods and construction techniques have been introduced. In addition, modern computational techniques such as the finite element method enable the utilization of sophisticated constitutive models for realistic model-based predictions of the response of pavements. The 7th RILEM International Conference on Cracking of Pavements provided an international forum for the exchange of ideas, information and knowledge amongst experts involved in computational analysis, material production, experimental characterization, design and construction of pavements. All submitted contributions were subjected to an exhaustive refereed peer review procedure by the Scientific Committee, the Editors and a large group of international experts in the topic. On the basis of their recommendations, 129 contributions which best suited the goals and the objectives of the Conference were chosen for presentation and inclusion in the Proceedings. The strong message that emanates from the accepted contributions is that, by accounting for the idiosyncrasies of the response of pavement engineering materials, modern sophisticated constitutive models in combination with new experimental material characterization and construction techniques provide a powerful arsenal for understanding and designing against the mechanisms and the processes causing cracking and pavement response deterioration. As such they enable the adoption of truly "mechanistic" design methodologies. The papers represent the following topics: Laboratory evaluation of asphalt concrete cracking potential; Pavement cracking detection; Field investigation of pavement cracking; Pavement cracking modeling response, crack analysis and damage prediction; Performance of concrete pavements and white toppings; Fatigue cracking and damage characterization of asphalt concrete; Evaluation of the effectiveness of asphalt concrete modification; Crack growth parameters and mechanisms; Evaluation, quantification and modeling of asphalt healing properties; Reinforcement and interlayer systems for crack mitigation; Thermal and low temperature cracking of pavements; and Cracking propensity of WMA and recycled asphalts.




Advances in Pavement Design through Full-scale Accelerated Pavement Testing


Book Description

Pack: Book and CDInternationally, full-scale accelerated pavement testing, either on test roads or linear/circular test tracks, has proven to be a valuable tool that fills the gap between models and laboratory tests and long-term experiments on in-service pavements. Accelerated pavement testing is used to improve understanding of pavement behavior,




Handbook of Measurement of Residual Stresses


Book Description

With contributions from 24 authorities from around the world, this handbook provides the most authoritative reference resource available on the impact of residual stresses on mechanical properties of materials and structures. You'll find detailed descriptions of a full range of measuring techniques, including hole drilling, layer removal, sectioning, X-ray diffraction, neutron diffraction, and ultrasonic methods. A variety of case studies which illustrate use of specific techniques are included to facilitate your understanding. Design and structural engineers, metallurgists, and material scientists will find a wealth of valuable information covering recent developments in residual stress measuring techniques, with guidelines provided for selecting the right measuring strategy for each specific application, and many helpful tips for improving quality control.










NBS Special Publication


Book Description




Stormwater Management


Book Description

Designed for both students and practicing professionals, it addresses critical issues of water quality, focusing on the illustration and application of both hydrologic and economic water management techniques. Stresses applications using worked examples, case studies and problems. Software is to assist in solving more complex problems and to apply demonstrated techniques. The software discussed in the book is available for download at http://www.cee.ucf.edu/software/swm1993.zip